
Lab 1: Git

The git dream team∗

August 26, 2024

Introduction
The goal of this lab is to introduce the most common aspects of git as a version control
system. The lab is separated into two complementary parts.

• On the one hand, the basics of git usage to manage a private project is tackled in the
first part. The focus shall be set here on the regular practice regarding the life cycle
of files under version control as well as the handling of branches.

• On the other hand, we will consider specific workflows adapted to a collaborative
usage of git.

To go beyond the aspects considered in this lab, we recommend three online resources:

1. https://git-scm.com/book/en/v2 an exhaustive e-book on GIT.

2. https://www.atlassian.com/git which gathers several tutorials on diverse aspects of
GIT.

3. http://gitimmersion.com/, most of the material of this lab is actually adapted from
this latter source.

This lab sheet mainly serves as a recap for the various git concepts and commands that
we wish you to learn. It will also provide several useful links to additional resources for those
who would like to look deeper into some concepts. During the lab, you will have to follow
the detailed tutorial available at:

https://foureys.users.greyc.fr/tp-git/gitimmersion
∗R. Clouard, S. Fourey, L. Simon

1

https://git-scm.com/book/en/v2
https://www.atlassian.com/git
http://gitimmersion.com/
https://foureys.users.greyc.fr/tp-git/gitimmersion

1 Workflow of the poor lonesome cowboy
In this section, you will work on your own. Your goal is to get familiar with the following
notions:

1. the creation of a git repository,

2. the life cycles of version-controlled files (see figure 1),

3. the handling of branches,

4. and eventually, remote repositories.

Figure 1: Life cycle of a file under git control.

1.1 Practical work
Concretely, your job here is to load https://foureys.users.greyc.fr/tp-git/gitimmersion and
follow steps from lab_01.html to lab_24.html. These labs are actually extracted and
modified from a subset of http://gitimmersion.com.

1.2 Summary of basic usage
The following sequence recaps the most common operations that occur when managing a
project with Git.

$ git init myproject # creating a repository
$ cd myproject
basic life cycle
$ emacs toto.txt
$ git status # checking which files are modified

2

https://foureys.users.greyc.fr/tp-git/gitimmersion
http://gitimmersion.com

$ git add toto.txt # staging modified files
$ git commit -m "Made an awesome text file" # committing the staged area
$ emacs toto.txt RCRules.txt
$ git add .
$ git commit -m "Modified toto.txt and created a new file"
branching
$ git branch
$ git checkout -b newbranch # creating and switching to a new branch
$ emacs toto.txt
$ git add .
$ git commit -m "new functionality in newbranch"
$ git checkout master
$ git merge newbranch # merging changes from another branch in master
remotes
$ cd ..
$ git clone myproject myclone # cloning the repo
$ git clone --bare myproject myproject.git # cloning as a bare repo
$ cd myclone
$ emacs tata.cpp
$ git commit -a -m "modified tata.cpp"
$ git remote add shared ../myproject.git # adding a remote
$ git push shared # pushing to the bare remote
$ cd ../myproject
$ git remote add shared ../myproject.git
$ git fetch shared # fetching changes from a remote
$ git merge shared/master master # merging a remote branch

1.3 Follow-up resources
At home, you may also visit the following resources:

• Concerning GIT basics : http://git-scm.com/book/en/v2/Git-Basics-Getting-a-Git-
Repository in particular sections 2.2 and 2.4.

• Concerning branches : http://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-
Nutshell in particular sections 3.1, 3.2 and 3.4.

• Besides, an advanced branching model is explained in http://nvie.com/posts/a-successful-
git-branching-model/.

• Regarding git internals (skipped in here) you may refer to http://gitimmersion.com/lab_22.html
and to section 3.1 of http://git-scm.com/.

3

http://git-scm.com/book/en/v2/Git-Basics-Getting-a-Git-Repository
http://git-scm.com/book/en/v2/Git-Basics-Getting-a-Git-Repository
http://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository
http://git-scm.com/book/en/v2/Git-Basics-Undoing-Things
http://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell
http://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell
http://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell
http://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
http://git-scm.com/book/en/v2/Git-Branching-Branching-Workflows
http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/
http://gitimmersion.com/lab_22.html
http://git-scm.com/book/en/Git-Branching-What-a-Branch-Is
http://git-scm.com/

2 Distributed workflows
In this section, you will work in pairs. Your goal is to get familiar with a distributed
workflow which involves an integration manager (in charge of the official repository) and
several developers (see figure 2). You will:

1. create the convenient repositories,

2. follow the steps of a developer who makes and submits a contribution, but also updates
its local repository according to the official one,

3. follow the steps of the integration manager who includes a developer’s contribution in
the blessed repository.

Figure 2: Distributed workflow with an official (blessed) repository.

2.1 Practical work
Your job here is to follow steps from lab_25.html to lab_28.html. Again, you need to
work in pairs and to designate the one who will be in charge of the official repository (Linus
in the text). The other team member will be a developer (Dave in the text).

2.2 Summary of basic commands
The following sequence recaps the most common operations that occur while this kind of
development workflow is used.

Integrator’s repositories setup (Linus)
$ git init --bare ~/public_html/gits/Project.git # Official bare repository
$ git clone linus@host1:/path/to/Project.git # Integrator’s private rep.
$ mv post-update.sample post-update # Enable post-update hook
$ git remote add dave http://host2/path/Project.git # Add Dave’s remote
Developer’s repositories setup (Dave)
$ git clone --bare http://official-host/path/Project.git # Public rep.

4

$ git clone dave@host2:/path/to/Project.git # Private rep.
$ git remote add upstream http://host1/path/Project.git # Add upstream remote
Developer’s contribution (Dave)
$ git pull upstream master # Get up-to-date master
$ git checkout -b cool-feature # Create a feature branch
$ git commit -m ’My nice feature’
$ git push origin cool-feature # Publish cool-feature on

public rep.
Integration in official rep. (Linus)
$ git checkout -b dave-cool-feature # Create dedicated local branch
$ git pull dave cool-feature # Merge Dave’s remote branch
$ git commit # Manual commit in case of conflicts
$ git checkout master # \
$ git merge dave-cool-feature # / Merge with master branch

2.3 Follow-up resources
At home, you may also visit the following resources:

• A short introduction to Git workflows https://www.atlassian.com/git/workflows

• Section of the Pro Git Book dedicated to workflows http://git-scm.com/book/en/v2/Distributed-
Git-Distributed-Workflows

5

https://www.atlassian.com/git/workflows
http://git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows
http://git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows

	Workflow of the poor lonesome cowboy
	Practical work
	Summary of basic usage
	Follow-up resources

	Distributed workflows
	Practical work
	Summary of basic commands
	Follow-up resources

