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ÉCOLE DOCTORALE SIMEM

English translation of the Doctoral dissertation
submitted by
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Introduction

Topology is the field of mathematics which claims that a donuts is nothing but a special

kind of coffee cup, provided this cup has an handle. Pattern recognition is the field of

computer science which attempts to make a computer being able to discriminate a coffee

cup from a donuts. Whereas these two motivations seam to be conflicting, it appears that

digital topology is a fruitful field of investigations for pattern recognition. Indeed, since

the early seventies, the definition of topological notions adapted to the digital framework

have allowed to define, mathematically formalize and justify the algorithms used by image

analysis and processing programs. Topology preserving operations do belong to this set

of algorithms, and we do not need to recall the interest of (topology preserving) thinning

algorithms for example in optical character recognition (OCR).

Now, more than the two dimensional case, an interesting field of investigation is the digital

space Z3 to which many recent works are related. In this purpose, two main notions have

been used in order to characterize topology preservation in Z3. The first one, the Euler

characteristic, has been adapted from classical topology and graph theory. The second

one, the fundamental group, has been adapted from algebraic topology to the digital

framework ([45]). In this thesis, we are motivated by the study of the basic elements of

the digital fundamental group : the homotopy classes of digital paths. Then, using some

new tools dedicated to the study of such classes, we prove some new theorems which

show that the digital fundamental group is a powerful tool for the study of topological

properties in a digital space. Furthermore, we attempted in this work to provide some

comprehensive proofs for all our results, proofs which only involves the basic notions

classically used in digital topology, such as adjacency relations and of course integer

arithmetic.

In a first part, we will introduce some notations and recall several mathematical notions

of sets and graphs theory. These definitions, together with some basic mathematical
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notions like correspondences, maps and some elementary knowledge of groups theory,

will allow the reader to understand all the results and their proofs which will be stated in

the sequel. Then, we will introduce some classical definitions which are specific to digital

topology and which have been either used or generalized in this work. Finally, we will end

this part with the description, using practical examples, of the main problem which have

motivated this thesis : the characterization of topology preservation in a digital space.

In a second part, we present a new framework for the study of the latter enunciated

problem. This framework is constituted by the objects known in the literature as digital

boundaries ([4, 40, 36, 92, 103]) and which will be simply called digital surfaces here,

since no confusion is possible with some other kinds of digital surfaces which have been

introduced by several authors ([76, 58, 67]). This kind of digital objects are practically

interesting since they constitutes the basis of some image visualization and processing

tools ([39, 40, 102, 52, 53]). Then, for both of these latter purposes, topology preservation

problems raise when one deals with the definition of thinning algorithms in this field ([70]).

Indeed, the use of thinning algorithms within surfaces today appears as an efficient tool

for developing algorithms dedicated to the visualization and analysis of the underlying

objects. We will recall in this part some previous results about the characterization of

topology preservation within digital surfaces ([70]) and then introduce a new tool for

proving theorems in this framework : the intersection number of paths. Some main

properties of this new tool will be proved so that the intersection number can be used to

distinguish the homotopy classes of paths. Then, using these properties, a new Jordan

theorem for digital curves lying on a digital surface will be stated. Finally, this tool

will allow the proof of a new theorem which states that the digital fundamental group is

sufficient to characterize topology preservation within digital surfaces, except in a very

particular and trivial case.

In a third part, we will no longer consider the field of digital surfaces but we will investigate

the topology preservation problem in the digital space Z3. In this goal, we observe that

the digital surfaces may be considered as an intermediate framework between the digital

spaces Z2 and Z3. In this last part, we provide the result of a work the intent of which was

to achieve a rigorous formalization of a concise global characterization of simple points of

Z3. These points are classically defined as points which can be removed from an object,

preserving the topological properties of this object ([75, 11, 8, 54, 46]). More precisely,
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we will investigate in this part the “obvious” correspondence between the topological

properties of a subset of Z3 and those of its background. Again, we are still interested

by the characterization of these properties using the digital fundamental group. Then,

defining a digital analogue to the linking number (basic invariant of knot theory) for

closed paths in Z3 and proving its invariance property with some continuous deformation

of the paths, we will be able to prove the correspondence previously mentioned. Indeed,

the linking number, similarly to the intersection number introduced in the second part,

allows to distinguish homotopy classes of closed paths in subsets of Z3. Finally, we will

conclude with an open question which suggests a link between digital topology and knot

theory.





Part I

Basic definitions and introduction to

digital topology





Introduction to Part I

In this first part, we present the basic notations and definitions which will be used in the

sequel of this document. After a very brief recall of several notions of sets and graphs

theories, we will introduce few classical definitions of digital topology such as adjacency

relations and connectivity. We will also introduce the definition of what could be called

a continuous deformation of a digital path, properly : the homotopy relation for digital

spaces. This latter relation will allow the definition of the digital fundamental group

which was first introduced in digital topology by T.Y. Kong in [45]. Then, we will set

and illustrate several definitions about topology preserving deformations of subsets of a

digital space.





Chapter 1

Digital spaces

In this chapter we introduce some basic definitions which will be used in the sequel.

1.1 Sets, relations and paths

In this section, E is a set.

Notation 1.1 (complement, set of subsets) If X ⊂ E we denote by X the comple-

ment of X in E, i.e the set of the elements of E which do no not belong to X. We denote

by P (E) the set of all the subsets of X.

Now, we recall the definitions of a binary relation and an equivalence relation on E.

Definition 1.1 (binary relation) A binary relation R on E is a subset of E × E.

– R is called symmetric if for all x ∈ E and y ∈ E, then (x, y) ∈ R ⇒ (y, x) ∈ R.

– R is called reflexive if (e, e) ∈ R for any e ∈ E.

– R is called transitive if for all a, b and c in E, then (a, b) ∈ R and (b, c) ∈ R
implies that (a, c) ∈ R.

– R is called anti-reflexive if for all e ∈ E, (e, e) /∈ R.

– R is called anti-symmetric if for all a and b in E, then (a, b) ∈ R and (b, a) ∈ R
implies a = b.

We also recall the definition of the symmetric and transitive closure of a relation R.
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Definition 1.2 If R is a binary relation on E, the symmetric and transitive closure of

the relation R is the relation Rst defined by :

Relst =



(x, y)

∃(z0, . . . , zl) such that for i = 0, . . . , l − 1, either (xi, xi+1) ∈ R or

(xi+1, xi) ∈ R.





Definition 1.3 If R is a binary relation on E, the transitive closure of the relation R
is the relation Rt defined by :

Relt =
{

(x, y) ∃(z0, . . . , zl) such that for i = 0, . . . , l − 1, either (xi, xi+1) ∈ R.
}

Definition 1.4 (equivalence relation, equivalence class) A binary relation Req on

E is said to be an equivalence relation if it is reflexive, symmetric and transitive. If

Req is an equivalence relation on E and e ∈ E, the equivalence class of e following Req,

denoted by [e]Req , is defined by :

[e]Req = { x ∈ E | (x, e) ∈ Req }.

In the context of digital topology, the following notion of adjacency relation will be

extensively used, as an analogue to the continuous notion of neighborhood.

Definition 1.5 (adjacency relation) A binary relation R on E is said to be an adja-

cency relation if it is symmetric and anti-reflexive.

In the sequel of this section, R is an adjacency relation on E.

Definition 1.6 (R−adjacency, R−neighborhood NR(x)) Let x ∈ E and y ∈ E.

We say that x and y are R−adjacent if (x, y) ∈ R. Furthermore, if X is a subset of

E we say that x /∈ X is R−adjacent to X if there exists an element y ∈ X such that

(x, y) ∈ R.

Given an element x ∈ E, we denote by NR(x) and we call the R−neighborhood of x the

set of elements of E which are R−adjacent to x.

Remark 1.1 The reader should be awarded about the possible confusion between the word

“neighborhood” used here, and the same word used in topology. Indeed, although neighbor-

hoods of an element as defined in topology always contains this element, a neighborhood in

the sense of Definition 1.6 is the set of spels which are close to a spel according to a given

adjacency relation, excluding the spel itself. Furthermore, the notation NR(x) used here

slightly differs from the standard one. Indeed, in many papers related to digital topology,
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the set NR(x) contains x itself and a notation like N∗
R denotes the R−neighborhood as

defined here.

Definition 1.7 (adjacency between sets) Let X and Y be two subsets of E. We say

that X and Y are R−adjacent if there exists x ∈ X and y ∈ Y such that (x, y) ∈ R.

Definition 1.8 (R−path, R−connectivity, R−connected components) Let a

and b be two elements of E. An R−path π from a to b with a length l in E is a sequence

π = (x0, . . . , xl) of elements of E such that a = x0, b = xl and for all i ∈ {0, . . . , l − 1}
the elements xi and xi+1 are R−adjacent (i.e. (xi, xi+1) ∈ R) or equal. The R−path π

is said to be closed if x0 = xl; and x0 is then called the base point or the extremity of π.

The path π is said to be simple if xi 6= xj whenever i 6= j (except when {i, j} = {0, l} if

π is closed). Two elements a and b of E are called R−connected in E if there exists an

R−path from a to b in E. Obviously, the R−connectivity is an equivalence relation on

E and the equivalence classes of the R−connectivity relation are called the R−connected

components of E. In other words, an R−connected component of E is a maximal subset

of E in which any two elements are R−connected.

We also define what we call a local back and forth in an R−path.

Definition 1.9 (local back and forth) Let π = (yk)k=0,...,p be an R−path in E. We

say that π has a local back and forth at the subscript k if yk−1 = yk+1.

Notation 1.2 In all this document, and in order to avoid heavy notations, for any closed

path π = (x0, . . . , xq) and any integer i ∈ {0, . . . , q} the notation xi+1 [resp. xi−1] should

be read xx+1 mod q [resp. xx−1 mod q], where we denote by a + b mod q the only positive

integer r such that a + b = nq + r for some n ∈ Z and r ∈ {0, . . . , q − 1}.

Definition 1.10 (change of parameter) Let π = (y0, . . . , yp) and π′ = (y′0, . . . , y
′
p) be

two closed R−paths with a length of p in E. The two paths π and π′ are said to be the

same up to a change of parameter if one of the two following properties hold :

– There exists k0 ∈ {0, . . . , p} such that for all k ∈ {0, . . . , p} we have y′k = yk0+k.

– There exists k0 ∈ {0, . . . , p} such that for all k ∈ {0, . . . , p} we have y′k = yk0−k.

Now, we define the operation of concatenation between paths.
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Definition 1.11 (concatenation of paths, inverse path) Let π = (y0, . . . , yp) and

π′ = (y′0, . . . , y
′
q) be two R−paths in E such that yp = y′0. We denote by π.π′ and we call

the concatenation of π and π′ the R−path (y0, . . . , yp−1, y
′
0, . . . , y

′
q). We also define and

denote by π−1 the path (yp, yp−1, yp−2, . . . , y0) which is called the inverse path of π.

Notation 1.3 If π = (xi)i=0,...,p is an R−path in E, we denote by c∗ the set :

{y ∈ E | ∃i ∈ {0, . . . , p}, y = xi }.

Definition 1.12 (trivial path) Let a ∈ E, the closed path π = (a, a) from a to a (with

a length 1) is called a trivial path reduced to a.

Definition 1.13 (simple closed R−curve) A finite subset C of E is called a simple

closed R−curve if it is R−connected and any point x of C is R−adjacent to exactly two

other elements of C. In this case, one can find a simple closed R−path c in E such that

c∗ = C which is called a parameterization of the curve C. Note that all such paths are all

the same up to a change of parameter (see Definition 1.10). We call c a parameterized

simple closed R−curve.

1.2 Digital images

In this section, we introduce the notions of digital space and digital object. First, we call

a digital space any couple (E,R) where R is an adjacency relation. Note that digital

spaces thus defined should not be confused with the digital spaces of classical topology.

For the sake of simplicity, given (E,R), we also call E a digital space. An element x of a

digital space E is called a spel (short for space element).

In the sequel, unless otherwise stated, (E,R) is a digital space.

Definition 1.14 (digital image, object, background) A digital image I on E is a

couple (E, X) where X is a subset of E. The set X is called a digital object. Elements of

X are called 1−spels or black spels whereas elements of X are called 0−spels or white

spels. The set X is called either the background of the set X or the background of the

digital image I.

It becomes necessary to give some concrete examples of both digital spaces and digital

images. In Figure 1.1 we have depicted using black points a subset of the set Z2. An
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element in Z2 is usually called a pixel as a short for picture element, and may be depicted

using either circles or unit squares centered on points with integer coordinates of the

Euclidean plane. In Figure 1.2, we have depicted, using unit cubes, a subset of Z3.

Again, an element in Z3 is usually called a voxel as a short for volume element and is

commonly depicted either by a point with integer coordinates, or by a unit cube centered

on a point with integer coordinates.

Figure 1.1: Two representations of a

subset of Z2.
Figure 1.2: A view of an object in Z3.

1.3 Adjacency relations in Z2 and Z3

In this section, we define some adjacency relations in Z2 and Z3 which define digital spaces

structures. Note that all the topological properties of a digital object one could study

are immediately dependent on the choice of an adjacency relation (in fact two adjacency

relations as explained in Section 1.4). Even if it is possible to define other kinds of

adjacency relations for these two spaces, those presented here are the most commonly

used.

First, let us introduce the following notation for digital spaces of the form Zd.

Notation 1.4 If x ∈ Zd, with d ∈ N, we denote by xi for i ∈ {1, . . . , d} the ith coordinate

of x, i.e. x = (x1, x2, . . . , xd).

Definition 1.15 (R4 and R8) We define the two adjacency relations R4 and R8 on Z2

as follows:

R4 = { (x, y) ∈ Z2 × Z2 / |x1 − y1|+ |x2 − y2| = 1 }
and,

R8 = { (x, y) ∈ Z2 × Z2 / |x1 − y1| |x2 − y2| ≤ 1 }
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n = 4 n = 8

Figure 1.3: A pixel x (in black) and

the sets Nn(x) for n ∈ {4, 8} (in

grey).

n = 6 n = 18 n = 26

Figure 1.4: A voxel x (black point) and the sets

Nn(x) for n ∈ {6, 18, 26} (in grey).

Definition 1.16 (Rn for n ∈ {6, 18, 26}) We define the three binary relations R6, R18

and R26 on Z3 as follows:

R26 = { (x, y) ∈ Z3 × Z3 / Max [|x1 − y1|, |x2 − y2|, |x3 − y3|] = 1 }
R18 = { (x, y) ∈ Z3 × Z3 / |x1 − y1|+ |x2 − y2|+ |x3 − y3| ≤ 2 } ∩ R26

R6 = { (x, y) ∈ Z3 × Z3 / |x1 − y1|+ |x2 − y2|+ |x3 − y3| = 1 }

Notation 1.5 (“n−” notation) In order to improve readability, and since the latter

adjacency relations will be used very often, we will abbreviate Rn to simply n in all the

notations which have been introduced in the previous section. For example, 6−adjacency

is a short for R6−adjacency and N26(x) is a short for NR26(x).

The different neighborhoods (see Definition 1.6) associated with the adjacency relations

of Definitions 1.15 and 1.16 are depicted respectively in Figures 1.3 and 1.4.

1.4 Complementarity between adjacencies

Now, we will justify the need of the use of two complementary adjacency relation when

dealing with topological properties of digital images.

Indeed, the aim of digital topology is the study of topological properties of digital images.

In this context, connectivity is obviously a fundamental notion. However, in order to

prevent some topological paradoxes, we must add some restrictions on the use of adjacency

relations when dealing with objects together with their complement. These paradoxes

appear for example when we try to define holes in objects of Z2 and cavities in objects of

Z3. The holes in Z2 and cavities in Z3 of an object are expected to be the finite connected

components of the complement of this object. However, if the same adjacency relation
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is used to define connected component of an object X and connected components of its

complement X, then the previous definition for holes leads to some situations which are

not acceptable. In Figure 1.5(a), the set X ⊂ Z2 of black pixels is 8−connected and

is expected to surround a hole made of white pixels. But since the two dotted pixels

are 8−adjacent, it is then possible to define a hole only as a 4−connected component of

white pixels. By the same way, we have depicted in Figure 1.5(b) a simple closed 4−path.

Since the two black pixels marked by an arrow are not 4−adjacent, the path is expected

to surround a single connected component of its complement. This is true if the two

dotted pixels are themselves adjacent, that is to say if we consider the complement of

the 4−path with the 8−connectivity. According to Kong ([49]), these consideration were

first touched on in [23].

(a) (b)

Figure 1.5: Two objects of Z2.

Figure 1.6: A topological sphere

in 18 or 26−connectivity.

Now, same considerations can be applied for subsets of Z3 as depicted in Figure 1.6. Let

X be the object made of all the visible voxels in left part of the figure. Then, if the black

voxels are considered as 26 or 18−connected, the enclosed white voxel is expected to be

isolated (i.e. not adjacent to any other white voxel) ; in such a way that the set of black

voxels constitutes a topological sphere with one cavity. Obviously, this is true only if we

use the 6−adjacency relation for elements of X.

Finally, we sum up these considerations by the use of couples (R,R) of adjacency rela-

tions, the R−adjacency being used for an object and the R−adjacency relation being

used for its complement. For digital images on Z2, we will use (n, n) ∈ {(4, 8), (8, 4)} and

for digital images on Z3, we will use (n, n) ∈ {(6, 26), (6+, 18), (26, 6), (18, 6+)}. Note

that we denote by 6+ the 6−adjacency relation associated to the 18−adjacency relation

(note that R6+ = R6 following Definition 1.16). Indeed, this will allow us to shorten

notations since the data of the adjacency relation used for the object then implies the
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one used for its complement (if n = 26 then n = 6, if n = 6+ then n = 18). In the sequel,

the latter enumerated couples (n, n) are said to be couples of complementary adjacency

relations.

More generally, we suppose in the sequel that the data of an adjacency relation R associ-

ated to an object X implies the use of a unique adjacency relation R for its complement.

Thus, the notation R makes sense. For this purpose, each time we introduce some nota-

tion for an adjacency relation (e.g. (6+)), we should precise once for all the associated

complementary adjacency relation.

Now, given a couple (R,R) of complementary adjacency relations, we will also use the

following definitions.

Definition 1.17 (black/white R−components) Let I = (E, X) be a digital image

and R be an adjacency relation on E. An R−connected component of X [resp. an

R−connected component of X] will be called a black component [resp. white component

or background component].

The following definition should not be confused with the notion of tunnels which will be

introduced in the sequel.

Definition 1.18 (R−cavity) Let I = (E, X) be a digital image and R be the adjacency

relation on E. A finite R−connected component of X will be called an R−cavity of X.

A cavity in Z2 is also called a hole.

Definition 1.19 (R−isolated spel, R−interior spel) Let X be a subset of E and x ∈
X. We say that the spel x is an R−isolated spel of X when NR(x) ∩ X = ∅; and x is

called an R−interior spel of X if NR(x) ∩X = ∅.



Chapter 2

Basic notions for digital topology

In this chapter we introduce a few notions which have been considered by several authors

in the framework of digital topology. For some of them, we have attempted to show how

these notions are close or derived from analogous ones in the field of classical topology.

All these notions are presented here for two main reasons. First, they have proved to

be useful for studying topological properties of digital images. On the other hand, tools

which are developed in Parts II and III make use of all these notions and sometimes

generalize them.

2.1 Index, winding number and Jordan Theorem

We recall here the definitions of two tools which have already been used in order to prove

some fundamental results in the field of digital topology.

• The first one, which we will call the index, has been introduced by A. Rosenfeld

in [87] and used to prove a digital Jordan theorem (Theorem 4 in further sub-

section 2.1.3) for digital pictures (i.e. digital images on Z2). Indeed, this number

characterizes the fact that a given pixel belongs either to the inside or to the outside

of a simple closed n−curve.

• The second one, the 2d winding number has been introduced by R. Malgouyres

([58]) to provide a way to distinguish connected components of the complement of

any closed path in Z2, and especially to characterize the outside of such a path.
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2.1.1 Index of a pixel

This number is associated to a pixel x in the complement of a simple closed n−path

c = (x0, . . . , xq) in Z2 for n ∈ {4, 8}.
Let x = (a, b) ∈ Z2 be a pixel in the complement c∗ of the pixels of c and ∆x =

{(a + k, b) | k ∈ N}. The right half line ∆x thus defined (see Figure 2.1) intersects c on

several intersection intervals. We define Λx,c as the set of intersection intervals between

c and ∆x :

Λx,c = {(k1, k2) | {xk1−1, xk2+1} ∩∆x = ∅ and xk ∈ ∆x for k1 ≤ k ≤ k2}.
Now, for any intersection interval λ = (k1, k2) ∈ Λx,c, we say that ∆x touches c at λ if

(x2
k1−1− b)(x2

k2+1− b) = 1 (i.e. xk1−1 and xk2+1 are on the same “side” of ∆x) and we say

that ∆x crosses c at λ if (x2
k1−1 − b)(x2

k2+1 − b) = −1.

In [87], Rosenfeld defined the inside and outside sets associated with the simple closed

n-curve c as follows :

• If ∆x,c crosses c an odd number of times then x belongs to the inside of c,

• otherwise x belongs to the outside of c.

x

c

∆x

(a) The half line ∆x crosses c twice, i.e.

x is outside c.

x
∆x

c

(b) The half line ∆x crosses c only one

time, i.e. x is inside c.

Figure 2.1: Definition of inside and outside pixels in c∗ when c is a simple closed 4−curve.

Then, Rosenfeld first proved the following Proposition.

Proposition 2.1 ([87]) The inside and the outside sets of a simple closed 4−curve with

a length greater than 4 are both nonempty.

And then, he proved that :
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Proposition 2.2 ([87]) Let c be a simple closed 4−curve with a length greater than 4.

If x is a pixel in the inside of c and y is a pixel in the outside of c, then, any 8−path

from x to y intersects c.

These two latter propositions state nothing but the fact that the complement of the sim-

ple closed curve c cannot be 8−connected since there must exist (Proposition 2.1) two

pixels x and y which are not 8−connected in c∗ (Proposition 2.2). Later, in [88], Rosenfeld

achieved the proof of the so called Jordan theorem which states that the complement of

a simple closed 4−curve with a length greater than 4 is made of two 8−connected com-

ponents, which obviously coincide with its inside and outside sets (see subsection 2.1.3).

With less concise but not more difficult proofs, all the previous propositions given in this

subsection are obviously valid in the case when c is a simple closed 8−curve, with the

convenient definitions.

Now, this simple but useful tool can be improved in order to distinguish connected com-

ponents of the complement of any closed n−path (for n ∈ {4, 8}), not only simple closed

paths. This leads to the definition of the winding number of a curve around a pixel in Z2

which has been used by R. Malgouyres.

2.1.2 The winding number

Motivation : a Jordan theorem in 3D

In [58, 61], R. Malgouyres has used the winding number, the definition of which is recalled

in this section. He needed this tool to prove a Jordan theorem, as Rosenfeld did for

simple closed curves in Z2, but this time for a kind of digital closed surfaces of Z3 which

have been defined in [58, 61] : the MA−surfaces. Such a surface is a set of voxels the

26−neighborhood of which satisfies a so called local condition (readers interested by the

different characterizations of surfaces made of voxels may refer for example to [76], [61],

[12], [28], [68] or [68]). Then, it was proved that any 26−connected set of voxels such

that each one satisfies the latter local condition does separates its background in two

6−connected components.

Like for the 2D case, a first step was to define interior and exterior voxels in the com-

plement of a closed surface S. Then, an analogue to the method described in previous

subsection is to count the number of times an half line Dy from a pixel y and parallel to
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one of the coordinates axes, crosses the surface. In the 3D case, we must still distinguish

a crossing intersection between Dy and the surface S from a touching one. These two

kinds of intersections are depicted in upper images of Figure 2.2(a) and 2.2(b). In order

to distinguish these two kinds of intersections, we first consider the set A of voxels of

S which are 26−adjacent to this intersection (see middle images in Figure 2.2). Then,

Malgouyres proved that it is possible to give a periodic but unique parameterization, up

to an orientation, of the set A ([61] and [59]) and, by the same way, of its projection on a

2D digital plane orthogonal to the line Dy. Because of the definition of the surface con-

sidered, this projection can be parameterized as an 8−path. Given this closed 8−path,

which is obviously included in a 3 × 3 grid, the fact that the line crosses or touches the

surface is equivalent to the fact that the central pixel of the 3 × 3 neighborhood (bot-

tom images of Figures 2.2(a) and 2.2(b)) is either inside or outside the projected closed

8−path.

Now, a full definition of the inside and outside sets of a non simple closed 8−path must

be given.

Winding number

The definition of the winding number is quite similar with the index one defined in

subsection 2.1.1 but this time counts not only the number of times an half line crosses

the path but the number of oriented transversal intersections.

Let x = (a, b) be a pixel in the complement of a (not necessarily simple) closed 8−path

c = (x0, . . . , xq) in Z2 for n ∈ {4, 8}. Let ∆α
x be a half line (a ray) for α ∈ {1, 2, 3, 4}

defined as follows :

∆1
x = {(a + k, b) | k ∈ N}.

∆2
x = {(a, b + k) | k ∈ N}.

∆3
x = {(a− k, b) | k ∈ N}.

∆4
x = {(a, b− k) | k ∈ N}.

The half line ∆α
x thus defined (see ∆1

x in Figure 2.4) intersects c on several intersection

intervals. We define Λα
x,c as the set of intersection intervals between c and ∆α

x :

Λα
x,c = {(k1, k2) | {xk1−1, xk2+1} ∩∆α

x = ∅ and ∀k1 ≤ k ≤ k2, xk ∈ ∆α
x }.
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y: Dy: , S: ,

↓

A:

↓

(a) The half line Dy touches the surface.

↓

A:

↓

(b) The half line Dy crosses the surface.

Figure 2.2: Upper images : Two kinds of intersections between an half line Dy from y and

the part of a MA−surface. Middle images : The set A of voxels which are 26−adjacent

to some voxels of the intersection. Bottom images : The 2d projection of the set A on a

plane orthogonal to Dy can be parameterized as a (not necessarily simple) closed 8−path.
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Now, for any intersection interval λ = (k1, k2) ∈ Λx,c, we say that λ is tangent intersection

between c and ∆α
x if (x2

k1−1 − b) × (x2
k2+1 − b) = 1 (i.e. xk1−1 and xk2+1 are on the

same “side” of ∆x) and we say that λ is a transversal intersection between c and ∆x if

(x2
k1−1−b)× (x2

k2+1−b) = −1. In this latter case, we associate to λ either the value +1 or

−1 depending on the orientation of the intersection following the sign conventions given by

Figure 2.3. Then, the winding number W α
x,c is nothing but the sum of the contributions

of the intersections between ∆α
x , being 0, +1 or -1 respectively for tangent, positive

transversal and negative transversal intersections (see Figure 2.5 for some examples).

Then, the following theorem has been proved in [58].

Theorem 1 ([58]) Let c be a closed 8−path in Z2 and x ∈ Z2 \ c∗. Then, W 1
x,c = W 2

x,c =

W 3
x,c = W 4

x,c.

This latter theorem allows to abbreviate W α
x,c to Wx,c since its value does not depend on

the choice of an half line ∆α
x for α ∈ {1, 2, 3, 4} and shows that the winding number is an

intrinsic notion. Furthermore, the following theorem sates that the winding number may

allow to distinguish pixels which do not belong to a same 4−connected component of the

complement of a closed 8−path. However, it does not provide a necessary condition for

this purpose.

Theorem 2 ([58]) Let c be a closed 8−path in Z2 and {x, y} ⊂ Z2 \ c∗. If x and y are

4−connected in c∗ then W α
x,c = Wα

y,c.

∆

∆

∆

2

1

3
-1

-1

-1

x

4∆
+1

+1

+1

-1+1

x

x

x

x

Figure 2.3: Sign conventions for transversal intersections.

In Chapter 6 we introduce the intersection number between digital paths which lie on a

digital surface (this kind of a digital space will be defined in Chapter 4). Then, some new

properties of the two dimensional winding number can be deduced from the properties

of the intersection number (see Chapter 8). Theorem 2 will thus appear as an immediate

corollary of some more general properties of the intersection number.
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x : ∆1
x : , c :

x
∆x

xk1
xk2

1

(a) Tangent intersection.

x
∆x

1

xk1

xk2

(b) Positive intersection.

x
∆x

1

xk2

xk1

(c) Negative intersection.

Figure 2.4: Tangent and transversal intersections.

x

c

∆1
x

(a) Wx,c = +2

x’

c

∆1
x’

(b) Wx,c = +1

Figure 2.5: Two examples of winding numbers.
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2.1.3 A digital Jordan Theorem

In this subsection we recall a simple but important result due to Rosenfeld about a

digital Jordan curve theorem. This very simple property is the discrete analogue of the

well known similar theorem about simple closed curves in R2. This can be seen as a basic

example of a classical result of topology which can be transposed in the digital framework.

In Part II (Chapter 7), we will prove a new Jordan Theorem in the field of digital surfaces

using a new tool, the intersection number, in such a way that the 2D Jordan Theorem

becomes a restriction of this new theorem to the case of the digital plane Z2.

We recall that a simple closed curve in R2 is a continuous map f from the real closed

interval [0, 1] to R2 such that f(0) = f(1) and the restriction of f on [0, 1[ is one-to-one.

Theorem 3 (Jordan curve theorem) If f is a simple closed curve in R2, then R2 \
f([0, 1]) has two connected components, one of which is bounded and the other is un-

bounded.

In [87] and [88], A. Rosenfeld has proved the following theorem :

Theorem 4 ([88]) If c is a digital simple closed n−curve in Z2 (with a length greater

than 4 if n = 4), then Z2 \ c∗ has two n−connected components, one of which is bounded

and the other is unbounded.

2.2 Homotopy

In this section, we deal with another very useful notion of algebraic topology which can

be defined in the digital context : the homotopy of paths. First, we recall the definition of

an homotopy in algebraic topology and then we will show how this notion can be defined

with consistence in the digital framework. Provided this definition, it will be possible

to introduce in the next section the digital fundamental group which is one of the most

important subject of investigations of this thesis.

2.2.1 Homotopy in classical topology

We first state few definitions in the field of classical point set topology. However, since

our purpose is not to state here all the notions of classical topology, these notions may
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be found in [43, 71], like for example the definition of a continuous map between two

topological spaces which will be used in the sequel.

Definition 2.1 (topological space) A topological space is a couple (E,O) where E is

a set and O ⊂ P (E) is such that :

i) ∅ ∈ O and E ∈ O.

ii) The union of any collection of elements of O belongs to O.

iii) The intersection of any two elements of O belongs to O.

Elements of O are called open sets of the topological space (E,O). The set O is also

called a topology on E.

Definition 2.2 (path) Let (E,O) be a topological space and let x and y be two elements

of E. A path f from x to y in E is a continuous map from [0, 1] to E such that f(0) = x

and f(1) = y. The path f is said to be closed if f(0) = f(1). A trivial path in E is a

path f0 such that f0 is constant (i.e ∃x ∈ E, ∀t ∈ [0, 1], f0(t) = x).

Definition 2.3 (catenation of paths) Let E be a topological space and let f and g be

two paths in E such that f(1) = g(0). We define the catenation of the two paths f and g

and we denote by f.g the following path in E :

f.g : [0, 1] −→ E

s ∈ [0, 1
2
] 7−→ f(2s)

s ∈ (1
2
, 1] 7−→ g(2(s− 1

2
))

Definition 2.4 (homotopy with fixed extremities) Let f and g be two paths in a

topological space (E,O) with same extremities (i.e. f(0) = g(0) and f(1) = g(1)). We

say that f and g are homotopic with fixed extremities in E if there exists a continuous

map H : [0, 1] × [0, 1] −→ E such that for any s ∈ [0, 1], we have H(0, s) = f(s),

H(1, s) = g(s) and for any t ∈ [0, 1], H(t, 0) = f(0) = g(0) and H(t, 1) = f(1) = g(1).

Definition 2.5 (homotopy with base point) Let (E,O) be a topological space and

x ∈ E. Two closed paths f and g from x to x in E are said homotopic with base point

x if they are homotopic with fixed extremities in E.
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Remark 2.1 If we denote by AB(E) the set of closed paths in E from the point B to B

(which is called the base point), then, the relation of homotopy with base point B is an

equivalence relation on AB(E).

An important definition is the definition of a simply connected space.

Definition 2.6 (simply connected space) A path-connected topological space (E,O)

is called simply connected if for any base point x ∈ E, every closed path from x to x in

E is homotopic with base point x to a trivial path.

f(0)

f(1)

g

f

E

(a) Two homotopic paths f and

g in E.

(b) A simply con-

nected space (sphere

in R3).

(c) A not simply connected

space (closed surface of R3).

Figure 2.6: Homotopy in a topological space and simply connected space.

The following lemma will be used in the next section in order to justify the definition of

homotopy for digital paths. This lemma comes from the very definition of homotopy and

simply connected sets and is illustrated in Figure 2.7.

Lemma 2.3 Let f and g be two paths in a topological space E. Let V be a simply

connected subset of E. Furthermore, let I = [a, b] ⊂ [0, 1] such that ∀x ∈ [0, a]∪ [b, 1], we

have f(x) = g(x); and ∀x ∈ [a, b], we have f(x) ∈ V and g(x) ∈ V . Then f and g are

homotopic with fixed extremities in E.

Sketch of proof : First, we must recall a classical result of algebraic topology which

states that the catenation of paths is compatible with the relation of homotopy with

fixed extremities. In other words, for any maps f , f ′, g and g′ such that f(1) = f ′(1) =

g(0) = g′(0), if f and f ′ are homotopic with fixed extremities in E then f.g and f ′.g are
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homotopic with fixed extemities in E; and if g and g′ are homotopic with fixed extemities

in E then f.g and f.g′ are homotopic with fixed extemities in E.

Now, we can define the following paths in E :

f1 : [0, 1] −→ E

s 7−→ f(sa)

f3 : [0, 1] −→ E

s 7−→ f(b + s(1− b))

f2 : [0, 1] −→ E

s 7−→ f(a + s(b− a))

g2 : [0, 1] −→ E

s 7−→ g(a + s(b− a))

It is readily seen that f = f1.f2.f3 and g = f1.g2.f3, furthermore f2 and g2 are continuous

maps from [0, 1] to V which is simply connected. From Definition 2.6, it follows that f2

and g2 are homotopic with fixed extemities in V (and so in E). Finally, we obtain that

f and g are homotopic with fixed extemities in E. 2

g

f,g

f

E

V

Figure 2.7: Two maps f and g which are the same but in a simply connected subset V

of E.

2.2.2 Homotopy for digital paths

In this subsection, we show that the definition of homotopy between paths in a topological

space can be transposed in the discrete context. First of all, a digital R−path with a

length l in an object X as defined in Section 1.1 can also be defined as a map from the

integer interval {0, . . . , l} to X such that two consecutive integers are sent onR−adjacent

spels of X. Now, we have to define the homotopy relation between paths. Here, we will

give an intuitive justification of the definition which will follow. For a detailed definition

and justification, see [45].

First, and since examples will be given for the digital spaces Z2 and Z3, we need to define

the two following small subsets of Z3 :
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Definition 2.7 (2×2 square) A 2×2 square in Z3 is one of the following sets for x =

(x1, x2, x3) ∈ Z3 :

{(x1, x2, x3), (x1 + 1, x2, x3), (x1, x2 + 1, x3), (x1 + 1, x2 + 1, x3)},
{(x1, x2, x3), (x1 + 1, x2, x3), (x1, x2, x3 + 1), (x1 + 1, x2, x3 + 1)} and

{(x1, x2, x3), (x1, x2 + 1, x3), (x1, x2, x3 + 1), (x1, x2 + 1, x3 + 1)}.

Definition 2.8 (2×2×2 cube) A 2×2×2 cube in Z3 is a set of the following form for

x = (x1, x2, x3) ∈ Z3 :

{(x1, x2, x3), (x1 + 1, x2, x3), (x1 + 1, x2, x3), (x1 + 1, x2 + 1, x3), (x1, x2, x3 + 1),

(x1 + 1, x2, x3 + 1), (x1 + 1, x2, x3 + 1), (x1 + 1, x2 + 1, x3 + 1)}.

Since the definition of continuity cannot be used in this context, we must use an indirect

way to characterize the fact that a digital R−path can be continuously deformed into an-

other one. Thus, from Lemma 2.3, some convenient definition of homotopy may be given

using small , but not too small, simply connected cells, called elementary R−deformation

cells, in which two paths with the same extremities are intuitively always homotopic.

Given a digital space E and two complementary adjacency relations (R,R), one can

define the elementary R-deformation cells in this space. Then a definition of elemen-

tary R−deformation can be given as follows : two paths are said to be equivalent up

to an elementary R−deformation if they are almost the same expect in an elementary

R−deformation cell.

We give in the following the Definitions of the elementary deformation cells for classical

digital spaces and adjacency relations. Note that the choice of these cells satisfies two

main criterions. The first one is that any connected subset X of the cell must be simply

connected according to Definition 2.6 applied to its continuous analogue. The second cri-

terion is that the deformation cell must be large enough to allow elementary deformations

to be performed inside thin parts of an object where it should be possible. The first cri-

terion is illustrated by Figure 2.8 where we have depicted few 26−connected subsets of a

2×2×2 cube in Z3. In these cases, the continuous analogue in R3 of these objects is nothing

but the set of points of the voxels (as unit cubes of R3) of the object. It is clear that any of

these sets is simply connected. In Figure 2.10(a) we have depicted a 6−connected subset

of a 2×2×2 cube. In this case, and since the adjacency used for the complement of the
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object is the 26−adjacency relation, it follows that the two white (i.e. not visible) voxels

of the cube are 26−connected and the continuous analogue (Figure 2.10(b)) is not simply

connected. Thus, the elementary 26−deformation cell cannot be a 2×2×2 cube; whereas a

2×2 square will be convenient since it will satisfy the latter criterion but also the second

one (it is large enough). However, for (n, n) ∈ {(26, 6), (18, 6), (6+, 18)} a 2×2 square

may not be sufficient to perform deformations of n−paths in an n−connected object. For

example, no elementary not trivial deformation would be possible in a 2×2 square in the

digital plane depicted in Figure 2.9. Thus, for (n, n) ∈ {(26, 6), (18, 6), (6+, 18)} we will

define an elementary deformation cell as a 2×2×2 cube.

Figure 2.8: Few subsets of a 2×2×2 cube in Z3.

Figure 2.9: A 2×2 square is not a large

enough deformation cell for (n, n) =

(26, 6) or (18, 6).

(a) (b)

Figure 2.10: A subset of a 2×2×2 cube

for (n, n) = (6; 26).

In the sequel of this subsection, E is a digital space, the couple (R,R) stands for two

complementary adjacency relations and X is a subset of E.

Definition 2.9 (elementary deformation cells in Z2 and Z3) Depending on the

adjacency relation couple (n, n) we have :

• If E = Z2, an elementary deformation cell is an 2×2 square of pixels.

• If E = Z3 and (n, n) = (6, 26), an elementary deformation cell is a 2×2 square of

voxels.
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• If E = Z3 and (n, n) ∈ {(26, 6), (18, 6), (6+, 18)}, an elementary deformation cell is

an 2×2×2 cube of voxels.

The following remark will be of interest in the sequel.

Remark 2.2 Two R−adjacent spels are always included in some elementary R−defor-

mation cell associated to E.

We can now define the relation of elementary deformation between two digital paths an

then the homotopy relation between digital paths.

Definition 2.10 (elementary R−deformation) Let π and π′ be two R−paths in X.

We say that π and π′ are the same up to an elementary R−deformation, and we denote

π ∼R π′ if π and π′ are of the form π = π1.γ.π2 and π′ = π1.γ
′.π2 where γ and γ′ are two

R−paths with the same extremities and both included in an elementary R−deformation

cell of E.

Definition 2.11 (R−homotopy of digital paths) Two R−paths π and π′ in X are

are said to be R−homotopic with fixed extremities in X, and we denote π 'R π′ if

there exists a sequence π1, . . . , πl of R−paths in X such that π = π1, π′ = πl and for

i = 1, . . . , l − 1 the path πi and πi+1 are the same up to an elementary R−deformation.

Definition 2.12 (reducible path) A closed R−path π from a spel x to x in X is said

to be R−reducible in X if π 'R (x, x) in X.

Remark 2.3 In the following, we will omit the words “with fixed extremities” since the

definition of the elementary R−deformation implies that the deformation is achieved with

fixed extremities.

Two examples of elementary n−deformations are depicted by Figure 2.11 for n = 4 in Z2

and in Figure 2.12 for n = 6+ in Z3.

Then, we can give a definition of simply connected digital objects as follows. Note that we

have used the notion of simply connectedness for subsets of deformation cells in order to

obtain Definition 2.9. One could think that simply connectedness is thus not well defined.

However, the fact that a very small subset of the space, like elementary deformations cells

are, is simply connected, is admissible with no need of more mathematical tools than those
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(a) (b)

Figure 2.11: The two black 4−paths are the same up to an elementary 4−deformation.

(a) (b)

Figure 2.12: The two black (6+)−paths are the same up to an elementary deformation.
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exposed here. This admitted property then leads to the commonly used deformation

relations, which are finally no more than conventional ones.

Now, we can define simply connected sets with no need of a definition of the continuous

analogue of a digital object. At this step, many definitions can be given which are similar

to their continuous analogues but which are stated in an only discrete way.

Definition 2.13 (simply R−connected set) The set X is said to be simplyR−conn-

ected if for any base point x ∈ X, every closed R−path π from x to x in X is R−reducible

in X.

An example of a subset of Z3 which is not simply connected is depicted in Figure 2.13.

Figure 2.13: This object of Z3 is not simply 18−connected since the 18−path (in black)

is not 18−reducible.

The following lemma will be useful in the next subsection.

Lemma 2.4 Let π be a R−path from a spel y0 to a spel yp in an object X. Then, the

closed R−path π.π−1 from y0 to y0 is R−homotopic to the path (y0, y0) in X.

Proof : Let π = (y0, . . . , yp). Then, for k ∈ {0, . . . , p} be denote by βk the R−path

(y0, y1, . . . , yk). We first prove that for all j ∈ {1, . . . , p} the closed path βj.(βj)−1

is R−homotopic to the path βj−1.(βj−1)−1. Indeed, for such j we have βj.(βj)−1 =

βj−1.(yj−1, yj, yj−1).(β
j−1)−1. Now, since the two R−adjacent spels yj−1 and yj belong to

a deformation cell (Remark 2.2), it follows that the path βj.(βj)−1 isR−homotopic to the

path βj−1.(yj−1).(β
j−1)−1 = βj−1.(βj−1)−1. Finally, we obtain that π.π−1 = βp.(βp)−1 'R

βp−1.(βp−1)−1 'R . . . 'R β0.(β0)−1 = (y0, y0). 2
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Using Lemma 2.4, we can already prove the following Proposition which will be useful in

the sequel.

Proposition 2.5 The set X is simply R−connected if and only if any two R−paths π

and π′ with same extremities are R−homotopic in X.

Proof : First, we suppose that any two paths π and π′ are R−homotopic with fixed

extremities in X. Then, let x be a spel of X and c = (x0, . . . , xq) be a closed R−path

from x to x in X (i.e. x0 = xq = x). It follows that c 'R (x, x) so c is reducible in X.

Now, suppose that any closed path in X is reducible in X. Then, let π1 and π2 be two

R−paths from x to y in X. We obviously have (y, y) 'R π−1
1 .π2 in X since π−1

1 .π2 is a

closed R−path in X. Since π1 is obviously R−homotopic to the path π1.(y, y) it follows

that π1 'R π1.π
−1
1 .π2 in X. From Lemma 2.4, we have π1.π

−1
1 'R (x, x) and finally

π1 'R (x, x).π2 'R π2 in X. 2

The following lemma will be useful in the sequel.

Lemma 2.6 Let π be a closed R−path in X which is reducible in X and let π′ be a closed

R−path such that π and π′ are the same up to a change of parameter. Then π′ is also

reducible.

Proof : If the two closed R−paths π = (y0, . . . , yp) and π′ = (y′0, . . . , y
′
p) are the same

up to a change of parameter, then one of the two following situation occurs :

i) π′ = (yk0 , yk0+1, . . . , yp).(y0, y1, . . . , yk0)

ii) π′ = (yk0 , yk0−1, . . . , y0).(yp, yp−1, . . . , yk0)

Case i) : Let γ be the path (y0, . . . , yk0). Then, from Lemma 2.4, the path γ−1.γ which

is a closed path from yk0 to yk0 is reducible so that π′ is R−homotopic to the path

γ−1.γ.π′ = γ−1.γ.(yk0 , yk0+1, . . . , yp).(y0, y1, . . . , yk0). where γ.(yk0 , yk0+1, . . . , yp) is noth-

ing but the path π. Then, it is straightforward that γ−1.γ.π′ is R−homotopic to the

path γ−1.(y0, y1, . . . , yk0) = γ−1.γ itself reducible according to Lemma 2.4. Finally, π′ is

reducible in X.

Case ii) : The path π′ of case ii) is nothing but the invert of the path π′ of case i). Then,

we should accept without proof that if a path c is reducible, so is the path c−1. Then, if

the path π′ of case i) is reducible, so is the path π′ of case ii). 2
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2.3 A digital fundamental group

In this section, we introduce an important tool of the digital framework which will provide

a formal and rigorous way to characterize topology preservation within digital spaces :

the digital fundamental group which was first introduced by T.Y. Kong [45]. Note that

one of the purposes of Part II is to state a new theorem which shows that this tool is

sufficient to characterize lower homotopy within the digital space constituted by a digital

surface (the notion of lower homotopy will be formally defined in Chapter 3). On the

other hand, the fundamental group is also used in the characterization of 3D simple points

which was simplified in Part III. We recall that the digital fundamental group is in fact

the central notion in our study.

2.3.1 Definition

The digital fundamental group has been first defined in [45]. It’s definition is similar to

the definition of the classical fundamental group in algebraic topology, and relies on the

notion of homotopy (see [98]).

Let X be an R−connected subset of E and B ∈ X be a spel which is called the base

point (or base spel). We denote by AB
R(X) the set of all the closed R−paths from B to

B in X. First, we observe that the R−homotopy relation is an equivalence relation for

paths of AB
R(X).

Let ΠR
1 (X,B) be the set of equivalence classes of paths of AB

R(X) under theR−homotopy

equivalence relation (i.e. ΠR
1 (X,B) = AB

R(X)/ 'R).

Notation 2.1 For any closed path c ∈ AB
R(X), we denote by [c]ΠR1 (X,B) the equivalence

class of the path c in ΠR
1 (X,B). When no confusing is possible, we will denote it briefly

by [c]. Note that the former notation is slightly different from the one given in Defi-

nition 1.4. Furthermore, in order to improve readability, we may denote [1]ΠR1 (X,B) for

[(B, B)]ΠR1 (X,B).

Now, we can define the subset C of (ΠR
1 (X, B)× ΠR

1 (X, B))× ΠR
1 (X,B) :

Definition 2.14 (C) We denote by C the subset of (ΠR
1 (X, B)×ΠR

1 (X,B))×ΠR
1 (X, B)

defined by : C = { ([a], [b]), [a.b]) | a, b ∈ AB
R(X) }.
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We will need the following lemma in order to prove that C is the graph of a map (Propo-

sition 2.8).

Lemma 2.7 ('R is compatible with .) Let a, b, a′ and b′ be four paths of AB
R(X), if

a 'R a′ and b 'R b′, then a.b 'R a′.b′.

Proof : From the very definition of R−homotopy, if a 'R a′ then a.b 'R a′.b. Indeed,

if a = a0 ∼R∼R a1 . . . ∼R al = a′ is a sequence of elementary R−deformations in X,

then so is a.b = a0.b ∼R∼R a1.b . . . ∼R al.b = a′.b. Similarly, a′.b 'R a′.b′. 2

Proposition 2.8 C is the graph of a map.

Proof : Let (([a], [b]), [a.b]) ∈ C and (([a′], [b′]), [a′.b′]) ∈ C. Suppose that ([a], [b]) =

([a′], [b′]), i.e. a 'R a′ and b 'R b′. From Lemma 2.7, it follows that a.b 'R a′.b′, i.e.

[a.b] = [a′.b′]. 2

Definition 2.15 (operation ∗) From Proposition 2.8 the following map is well defined :

∗ : ΠR
1 (X,B)× ΠR

1 (X, B) −→ ΠR
1 (X,B)

([π1], [π2]) 7−→ [π1] ∗ [π2] = [π1.π2]

Then, ∗ is an internal operation on ΠR
1 (X, B).

Proposition 2.9 (Πn
1 (X, B), ∗) is a group.

Proof : Let πid be the trivial path (B, B).

• The operation ∗ is associative, indeed, from the very definitions of “∗” and “.”,

([a] ∗ [b]) ∗ [c] = [a.b] ∗ [c] = [(a.b).c] = [a.(b.c)] = [a] ∗ [b.c] = [a] ∗ ([b] ∗ [c]).

• For any class [π] ∈ Πn
1 (X,B) we have [π] ∗ [πid] = [πid] ∗ [π] = [π]. Indeed, for any

path π ∈ AB
R(X) the paths π.(B,B) and (B,B).π are both R−homotopic to π (in

fact π.(B, B) and π are obviously the same up to an elementary R−deformation).

Thus, πid is the identity element of the structure (ΠR
1 (X, B), ∗).

• For any equivalence class [π] in ΠR
1 (X,B), we define [π]−1 = [π−1]. Then, [π] ∗

[π]−1 = [π] ∗ [π−1] = [π.π−1]. From Lemma 2.4, the path π.π−1 is R−homotopic to

the trivial path (B, B). Thus, [π] ∗ [π]−1 = [πid]. Similarly, [π]−1 ∗ [π] = [πid].
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2

The following proposition means that the digital fundamental group, up to an isomor-

phism, does not depend on the choice of a base point in a same R−connected component

of X.

Proposition 2.10 Let B and B′ be two spels which are R−connected in X. Then

ΠR
1 (X,B) and ΠR

1 (X, B′) are isomorphic.

Proof : Let c be a R−path from B to B′ in X and I be the following map :

I : ΠR
1 (X,B) −→ ΠR

1 (X, B′)

[π] 7−→ [c−1.π.c]

First, we prove that I is a group morphism. Let π1 and π2 be two paths in AB
R(X). We

have I([π1] ∗ [π2]) = I([π1.π2]) = [c−1.π1.π2.c]. On the other hand, I([π1]) = [c−1.π1.c]

and I([π2]) = [c−1.π2.c] so I([π1]) ∗ I([π2]) = [c−1.π1.c] ∗ [c−1.π2.c] = [c−1.π1.c.c
−1.π2.c].

But from Lemma 2.4, c.c−1 'R (B, B) so that [c−1.π1.c.c
−1.π2.c] = [c−1.π1.π2.c]. Finally,

I([π1] ∗ [π2]) = I([π1]) ∗ I([π2]).

Now, let π′ ∈ AB′
R (X) (i.e. [π′] ∈ ΠR

1 (X, B′)), then the path π = c.π′.c−1 from B to B in

X is such that I([π]) = [π′]. Indeed, I([c.π′.c−1]) = [c−1.c.π′.c−1.c] and from Lemma 2.4,

we have c−1.c.π′.c−1.c 'R π′ so [c−1.c.π′.c−1.c] = [π′]. Finally, I is onto.

Suppose that π1 and π2 are two paths of AB
R(X) such that I([π1]) = I([π2]). It follows

that the paths c−1.π1.c and c−1.π2.c are R−homotopic in X. Now, if c−1.π1.c 'R c−1.π2.c

then c.c−1.π1.c 'R c.c−1.π2.c (observe that the latter two paths are paths from B to B′).

Similarly, we also deduce that c.c−1.π1.c.c
−1 'R c.c−1.π2.c.c

−1 (paths form B to B). From

Lemma 2.4, it follows that π1 'R π2 so that [π1] = [π2]. Finally, I is one to one. 2

2.3.2 Group morphism induced by the inclusion map

The notion of a group morphism induced by an inclusion map will be used in next Parts to

characterize topology preservation when a set of spels (Part II) or a single spel (Part III)

is removed from an object.

Let Y ⊂ X be two subsets of a digital space (E,R) and B be a spel of Y . We denote by

i : Y −→ X the inclusion map of Y in X (i.e. ∀x ∈ Y , i(x) = x). Then, one can define

a map i+ from AB
R(Y ) to AB

R(X) as follows :
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i+ : AB
R(Y ) −→ AB

R(X)

(x0, x1, . . . , xq) 7−→ (i(x0), i(x1), . . . , i(xq)) = (x0, x1, . . . , xq)

This map simply send a closed path of AB
R(Y ) to the same closed path as a path of

AB
R(X). Then, we can define the canonical following group morphism :

Definition 2.16 We define i∗, the group morphism induced by the inclusion of Y in X

by :

i∗ : ΠR
1 (Y, B) −→ ΠR

1 (X,B)

[c]ΠR1 (Y,B) 7−→ [c]ΠR1 (X,B)

This map is well defined since two R−paths which are R−homotopic in Y are obviously

R−homotopic in X so that the an homotopy class [c]ΠR1 (Y,B) is sent by this map on a

single homotopy class in ΠR
1 (X,B). Furthermore, this map is clearly a group morphism

from the very definition of the operation ∗ (Definition 2.15).





Chapter 3

Topology preservation

In this chapter, we will introduce the notion of topology preserving deformations within

digital objects. While Sections 2.2 and 2.3 were dedicated to the definition of some

continuous deformations for digital paths, another notion of homotopy can be defined for

digital objects themselves. First, we will recall an important application of this notion :

the so called homotopic thinning algorithms. Then, we will introduce several generic

definitions before giving their illustrations in the digital space Z2.

3.1 Topology preserving deformations

Here we give a first approach to the notion topology preservation in a digital space, taking

examples in the digital space Z2 with no formal definition of this central notion. However,

this section will help to motivate the few definitions which will be given in Section 3.2.

Then, in a following section we will use these definitions to formalize the main results

obtained by several authors about topology preservation in Z2.

In the image analysis chain, and for example for pattern recognition purpose, it is some-

times necessary to extract some topological informations from images. Then, this can be

achieved after a first step which consists in the use of an homotopic thinning algorithm.

Here, homotopic means that such an algorithm is expected not to change the topologi-

cal properties of the given image. However, given an object X in a digital space E, it

produces an object Y ⊂ X which is topologically equivalent to the object X but which

has a lower size (according to the number of spels it contains). More precisely, Y is one

dimension less than X as illustrated in Figure 3.1(b), where every large areas with holes
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are reduced to a network made of curves (see scissors of Figure 3.1(a)), and every parts

with no hole are reduced to isolated pixels. In practice, it is often useful to use some

thinning algorithms which also preserve some geometrical informations of the objects as

depicted in Figure 3.1(c). Now, the most commonly used method to operate such an

extraction consists in a sequential, and sometimes parallel, deletion of spels, taking care

not to change the topological properties of the image. In this case, like in the case of

continuous deformations which will be described next, a characterization of a topology

preservation is needed for an operation which consists in the removal of a spel.

(a) The initial image. (b) Resulting image after a

complete thinning of the ini-

tial image.

(c) Resulting image after a

partial thinning algorithm.

Figure 3.1: Illustration of the possible result of an homotopic thinning algorithm in Z2.

On the other hand, it is sometimes useful to simply check if some kind of continuous

deformations can be applied to an image in order to obtain a second one. As an example,

one may wonder if the image of Figure 3.2(a) can be continuously deformed into the one

of Figure 3.2(b). Obviously, the definition of a continuous deformation in a digital space

is expected not to allow such kind of deformation. In this case, the notions which will

follow are also of interest.

Indeed, a classical way to define a topology preserving deformation of a digital object

is to break it up in a sequence of elementary deformations each of which consists in the

deletion or addition of a single spel of the object. The fundamental notion of this method

is the notion of simple spel. A simple spel is thus defined as a spel the deletion of which

leaves the topological properties of an object unchanged. However, this definition is

clearly not acceptable. Indeed, no precise definition has been given yet of the topological

properties of an object. In fact, this latter definition depends on the considered digital



CHAPTER 3. Topology preservation 49

(a) (b)

Figure 3.2: Can the two images be continuously deformed one into each other ?

space. Clearly, an object in Z2 is characterized by its number of black and white connected

components and by the surrounding relations between these components (see Figure 3.2).

This definition leads to an immediate definition of a simple pixel which itself leads to a

local characterization of such pixels.

In next section, we will introduce the notions of simpleness property, local characteriza-

tion, lower homotopy and more. Note that these definitions do not depend on the digital

space considered but only on the definition of a first property : simpleness.

3.2 Simpleness property and homotopy

Since the definition of a simple spel is very dependent on the digital space considered,

and since many further definitions use this latter notion, we first introduce the notion of

a simpleness property as a generic one. However, since this property is strictly related to

topology preservation for our purpose, we choose to use the word “simpleness” in order

to recall that this kind of property must be precisely defined for each kind of digital

space. Moreover, in order to give a practical meaning of these definitions, and as a first

introduction to the questions which will be investigated in Parts II and III, we will also

illustrate these notions in the case of the digital space Z2 in next subsection.

Definition 3.1 (simpleness property) Let (E ,R) be a digital space and P (E) be the

set of subsets of E. We define a simpleness property S in E as a map from P (E)× E to

{0, 1}. If X is a subset of E, a spel x is called S−simple for X if S(X, x) = 1.

Following the definition of an S−simple spel, we can define S−simple sets which are sets

one can order as a sequence such that an iterative deletion of spels following this sequence
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only removes S−simple spels.

Definition 3.2 (S−simple set) Let (E,R) be a digital space and S be a simpleness

property on E. Furthermore, let XsubsetE and let D = {x0, x1, . . . , xl} be a subset of X.

The set D is called an S−simple set for X if there exists a permutation σ of {0, . . . , l}
such that for i = 0, . . . , l the spel xσ(i) is S−simple for X \ {xσ(j) | j < i }.

Now, the definition of simple spels allows us to define one of the fundamental notion of

digital topology especially in the context of thinning algorithms : the lower homotopy

relation.

Definition 3.3 (lower S−homotopy) Let Y ⊂ X be two subsets of a digital space E

and let S be a simpleness property in E. The set Y is said to be lower S−homotopic to

X if the set Y \ X is an S−simple set for X. In other words, there exists a sequence

S0 ⊂ S1 ⊂ . . . ⊂ Sk of subsets of E such that Y = S0, X = Sk and for i = 0 . . . k − 1, the

set Si is obtained by deletion of an S−simple spel in Si+1.

If the definition of lower homotopy is clearly related to the homotopic thinning process, it

is however useful to define a more general relation which links digital objects which can be

said equivalent up a to some continuous deformation. Indeed, for image analysis purpose,

one may want to characterize the fact that any of the objects depicted in Figure 3.3 can

be obtained by a continuous deformation of each other. A natural way to define such

an equivalence relation between objects is to use the notion of simple spel. This kind of

deformation is sometimes called a simple deformation as in [91]. Here we will use the

term of symmetric homotopy.

Figure 3.3: Two subsets of Z2 which are the

same up to a “continuous” deformation.
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Definition 3.4 (symmetric S−homotopy) Let X and Y be two subsets of a digital

space E and let S be a simpleness property on E. The set X is said to be symmetrically

S−homotopic to Y if there exists a sequence S0, S1, . . . , Sk of subsets of E such that

X = S0, Y = Sk and for i = 0 . . . k− 1, the set Si is obtained by deletion of an S−simple

spel in Si+1 or the set Si+1 is obtained by deletion of an S−simple spel in Si.

Now, we introduce the notions of a local characterization and a local property. A local

characterization can be defined as a map from P (E) × E to {0, 1}, the value of which is

computed for each x ∈ E by considering a small set of spels.

Definition 3.5 (local characterization, local property) Let (E,R) be a digital

space and X be an object of E . A local characterization is a map C of the form :

C : P (E)× E −→ {0, 1}
(X, x) 7−→ V(NR(x) ∩X)

Where V is a map from P (E) to {0, 1}. We say that a spel x ∈ E satisfies the local

characterization C in X if C(X, x) = 1. A property for spels and sets in a digital space

is said to be local if there exists a local characterization C such that a spel x satisfies the

property with respect to X if and only if C(X, x) = 1.

3.3 Topology preservation is Z2

In this section, X is a digital object in the digital space E = Z2 and (n, n) ∈ {(4, 8), (8, 4)}.
It is commonly admitted that the deletion of a pixel x in X ⊂ Z2 changes the topol-

ogy of X if it modifies the number of n−connected components of X or the number of

n−connected components of X. This is summed up by the following definition of the

simpleness property Sn :

Definition 3.6 (simple pixel) A pixel x ∈ X is called Sn−simple for X if the two

following properties are satisfied :

i) X and X \ {x} have the same number of n−connected components.

ii) X and X ∪ {x} have the same number of n−connected components.

In order to avoid heavy notations and since no confusion is possible, we will abbreviate

Sn−simple by n−simple.
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We may illustrate on an example that deletion or addition of pixels which are n−simple

cannot change the topological properties of a two dimensional digital image. Indeed,

as previously mentioned, such an image is characterized by its number of black and

white connected components but also by their surrounding relations. In Figure 3.4, we

have depicted for an object X the set of pixels (in grey) which satisfy the properties of

Definition 3.6. In other words, one can remove any one of the grey pixels in such a way

that the topological properties of the image are unchanged. Conversely, the removal of

any black pixel does change the topological properties of the image (according to the

adjacency relations couple (n, n) which is considered).

(a) (n, n) = (4, 8) (b) (n, n) = (8, 4)

X = { , }

Figure 3.4: Illustration of the simpleness property Sn for n ∈ {4, 8}, only grey pixels are

n−simple for X.

Now, a very useful property is that the simpleness property Sn can be locally character-

ized. Indeed, the following theorem can be found in [87] :

Theorem 5 (local characterization of simple pixels) The pixel x ∈ X is n−simple

for X if and only if :

i) Nn(x) ∩X is not empty and n−connected.

ii) Nn(x) ∩X is not empty and n−connected.

It is clear that this latter theorem provides a local characterization of the simpleness

property Sn in the sense of Definition 3.5 since Nn(x) and Nn(x) are both subsets of

N8(x). In Figure 3.5, we have depicted a few examples of 8−neighborhoods and given

their corresponding simpleness property according to the local characterization. For



CHAPTER 3. Topology preservation 53

example, the black pixel x of Figure 3.5(f) is not 8−simple since N4(x)∩X = ∅. At this

step, we observe that the problem of topology preservation for a digital image in Z2 is

reduced to connectivity consideration in the neighborhood of a pixel. In next Parts, we

will see that the same remark holds for some other kinds of digital spaces.

not 4−simple

8−simple

(a)

4−simple

8−simple

(b)

4−simple

not 8−simple

(c)

not 4−simple

not 8−simple

(d)

not 4−simple

not 8−simple

(e)

4−simple

not 8−simple

(f)

x : X : , X :

Figure 3.5: Simple and not simple pixels.

The definition of n−simple pixels in Z2 leads to the definitions of n−simple sets, lower

n−homotopy and symmetric n−homotopy following Definitions 3.2, 3.3 and 3.4.

Now, an important result is that it is possible to characterize the fact that a subset Y of

X is lower n−homotopic to X. Indeed, the following Proposition, which belongs to the

folklore, leads to an efficiently computable algorithm to decide whether an object Y is

lower n−homotopic or not to another object X in which it is included.

Proposition 3.1 (characterization of lower homotopy in Z2) Let Y and X be two

subsets of Z2 such that Y ⊂ X. The set Y is lower n−homotopic to X if and only if the

two following conditions are satisfied :

i) Each n−connected component of X contains a single n−connected component of Y .
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ii) Each n−connected component of Y contains exactly one n−connected component

of X.

Now, a similar question can be raised for symmetric homotopy. Thus, a recent work of

A. Rosenfeld and al. in [91] provides a characterization of symmetric homotopy which

uses the notion of adjacency trees associated to a digital image. In other words, they gives

a way to check that the objects depicted in Figure 3.6(a) are symmetrically n−homotopic

whereas the two ones of Figure 3.6(b) are not. A similar use of adjacency trees in order

to characterize symmetric homotopy can also be found in Bykov and Zerlakov [17].

(a) Two symmetrically homotopic objects. (b) Two objects which are not symmetri-

cally homotopic.

Figure 3.6: Symmetric homotopy in Z2.

First, we must recall the two following definitions which are slightly adapted from [91] :

Definition 3.7 (surrounding relation [91]) Let U , V and W be three pairwise dis-

joint subsets of Z2. We say that V n−separates U from W if any n−path from a pixel of

U to a pixel of W must contain a pixel of V . Now, let B be an n−connected component

of a digital image I in Z2 and let W be an n−connected white component of I. We say

that B surrounds W if B n−separates W from all but finitely many other pixels of B.

Respectively, we say that W surrounds B if W n−separates B from all but finitely many

other pixels of B.

Definition 3.8 (adjacency tree [91]) Let X be an object in a digital image I of Z2.

Then the graph, whose vertices are the black and white connected components of I and
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whose edges follow the symmetric closure of the surroundness relation between these con-

nected components, is a rooted tree which is called the adjacency tree of I and is denoted

by A(I).

The leaves of such a tree are connected components which do not surround another

component, like for example black components with no holes. In Figure 3.7(b) we have

depicted the adjacency tree associated to the image shown in Figure 3.7(a). The root of

this tree is the not finite white component which surrounds any other connected black or

white connected component. In Figure 3.7(c), we give the canonical form of the adjacency

tree where components are depicted with small circles with the corresponding color.

In [91], Rosenfeld and al. proved the following theorem which provides an algorithm to

decide whether two 2D objects are symmetrically homotopic or not. Indeed, it reduces

this problem to the graph isomorphism one.

Proposition 3.2 ([91]) Let I and I ′ be two digital images in Z2 whose associated ad-

jacency trees are respectively A(I) and A(I ′). Let X [resp. X ′] be the set of black pixels

of I [resp. I ′]. Then, the sets X and X ′ are symmetrically n−homotopic if and only if

A(I) and A(I) are isomorphic.

Note that the most difficult result which has been proved as a part of the latter Proposition

is the fact that two images which have isomorphic adjacency trees can be obtained one

from each other by a sequence of removal or addition of simple pixels.

In order to avoid possible confusions between the problem of the characterization of lower

homotopy and the characterization of symmetric homotopy, we give the example depicted

in Figure 3.8. Here, the object of Figure 3.8(b) is obviously not lower n−homotopic to the

object of Figure 3.8(b) since (a least) the marked pixel of Figure 3.8(a) is not n−simple

for n = 4 or n = 8, and this remains true after any sequential removal of n−simple pixels

in this object. This image can be found in [73] as an example of two objects which are

not “topologically” equivalent. However, the words “topologically equivalent” should be

understood there in the context of thinning, and in this context, topological equivalence is

often used to express lower homotopy. Nevertheless, theses two objects are symmetrically

homotopic in our sense as shown by Figure 3.9. In this Figure, the sets of gray pixels are

simple sets (see Definition 3.2), and this show how each image can be obtained from its

previous one by a sequence of deletion or addition of simple pixels. This simple example
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(a) An image in Z2.

(b) The associated adjacency tree whose vertices

are black and white connected components of

the image. The root is the outside white con-

nected component.

(c) A canonical repre-

sentation of the adja-

cency tree.

Figure 3.7: Adjacency tree associated with a 2D digital image.
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shows that the reader should be warned against the possible confusion between symmetric

homotopy (i.e. topological equivalence) and lower homotopy.

(a) (b)

Figure 3.8: The right object is not lower

n−homotopic to the left one for n ∈ {4, 8}.
Figure 3.9: A sequence of addition and re-

moval of n−simple sets (for n ∈ {4, 8}).





Conclusion of Part I

In this part, we have introduced the notion of digital images and provided the formalism

which allows to deal with the topological properties of a digital space. Many examples

have been given in the case of the digital space Z2; however, almost all the notions intro-

duced have been given for any kind of digital space provided some convenient adjacency

relations.

In next parts, we will investigate two other digital spaces. The first one is the space

of digital boundaries of objects in Z3 and the second is Z3 itself. In both parts, our

investigations are motivated by the use of the digital fundamental group in order to

characterize topology preservation in these spaces. More precisely, our motivation is to

show that the digital fundamental group is a powerful tool in this context. This goal was

reached after having defined several new tools such that the intersection number and the

linking number.





Part II

Topology preservation within digital

boundaries





Introduction to Part II

In the 2D case, topology-preserving thinning algorithms have shown to be very basic

and essential tools in pattern recognition and classification of objects represented in a

planar grid. Thus, topology preservation in the 3D case is a very important question

if we want to develop useful and efficient tools for 3D images analysis. Many authors

have been working on homotopic thinning algorithms from which a simple definition of

homotopy between digital sets can be derived (see [45], [8] or [46]). Now an open question

remains about the existence of a reasonably usable algorithm to decide if a given 3D set

Y is lower homotopic to another object X in which it is included. Whereas a simple

necessary condition considering holes in objects of Z2 exists (Proposition 3.1, Part I),

the 3D case is far from being so trivial. Today, a necessary condition P(X, Y ) can be

given in terms of properties of the digital fundamental group morphisms ([45]) induced

by inclusion of connected component of X,Y , X and Y (see Section 2.3.2). However, one

can find some examples which show that this condition is not sufficient (see “Conclusion

and perspectives”). Nevertheless, in the intermediate framework of digital surfaces which

will be investigated here, we will prove that the digital fundamental group is sufficient to

characterize lower homotopy.

Indeed, another kind of digital objects is heavily used for image visualization and analysis :

the digital surfaces, often called digital boundaries in order to avoid confusion with the

surfaces defined as sets of voxels. Digital boundaries are defined as the “visible” surfaces

of a 3D object when visualized as a set of unit cubes (voxels). These surfaces are made

of unit 2D squares, the faces of the voxels, so called surfels (short for surf ace elements).

The data of the boundary of an object in Z3 is a first step for some 3D visualization, but

it also provides a useful and efficient data set for image processing and analysis purposes.

For example, such objects have been used in [70] by R. Malgouyres and A. Lenoir to

extract some anatomical informations from Nuclear Magnetic Resonance (NMR) images.
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Indeed, first works on digital surfaces were motivated by there applications in medical

imagery (see [39, 41, 36]). The first motivation of the paper by Malgouyres and Lenoir

was the extraction of the loci cortical sulci of the human brain. In order to achieve this

extraction they had to apply a thinning algorithm to a binary image on the the surface of

the brain; the latter image being obtained by thresholding of the image of mean curvature

computed at each surfel using the method described in [53].

Indeed, the set of surfels whose curvature is negative can be seen as map from the set of

surfels of the boundary to the set {0, 1}. In other words, it may be seen as an object in

some kind of digital space. More generally, any property which could be checked for each

surfel could lead to such an object. Then, thinning algorithms within these objects will

have to consider the notions of simple surfels as intuitively defined in the previous part.

Thus, this show the need of a theoretical framework for studying topology preservation

within subsets of digital surfaces.

For this purpose, it is possible to define some convenient adjacency relations between

surfels in such a way that a digital boundary constitutes a digital space on which all the

generic notions which have been introduced in the previous part are well defined. Among

other things, one can define connectivity, homotopy between paths, simple surfels and

homotopy between subsets of a digital surface. In [70], the authors have proved that a

similar criterion to the condition P(X,Y ) previously mentioned, using the digital funda-

mental group and intersection between cavities, is a necessary and sufficient condition

for lower homotopy between subsets of digital surfaces. Cavities here denote connected

components of the complement of a part X of a digital surface Σ (Definition 1.18).

Since this latter paper, it was a conjecture that the condition about the holes was itself a

consequence of the condition on the digital fundamental groups except in a very particular

case. The purpose of this part is to state and prove this result and then give a new theorem

about lower homotopy between subsets of a digital surface (Theorem 13 in Chapter 9).

This leads to a very concise new characterization which shows the ability of the digital

fundamental group to completely characterize lower homotopy in this field.

However, the lack of tools for studying homotopy classes of paths (i.e elements of the

digital fundamental group) brings us to define an use a new tool : the intersection

number which was introduced by the author and R. Malgouyres in [32]. This number,

which counts the number of oriented intersections between two kinds of paths, is shown
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to be invariant under any homotopic deformation of the paths. Then, it can be used for

example to prove that two paths are not homotopic. Especially, it can also be used to

prove that a path is not reducible. This latter property can be seen as a generalization of

some notions introduced in [93] where Rosenfeld and Nakamura have been studying the

properties of simple closed curves in 2D, considering for example curves surrounding a

2D hole. However, in our purpose, we are interested by general digital paths, surrounding

cavities but also tunnels which are not met in 2D digital topology. The notion of a tunnel,

not simple to define, will be introduced in Chapter 5.

In Chapter 4, we will give the definition of a digital surface and introduce the basic

definitions which will allow to discuss on the topological properties of such a digital

space. Then, in Chapter 6 we will introduce the intersection number and state and prove

its main properties. Next, two applications of this new tool will be given in Chapter 7

and 8, respectively, a new Jordan theorem within digital surfaces and a new property for

the 2D winding number which has been introduced in Section 2.1.2. Finally, we will end

with the main result of this part in Chapter 9 : the proof of a new theorem about the

characterization of lower homotopy within digital surfaces.





Chapter 4

Digital boundaries (surfaces)

4.1 Two kinds of digital surfaces

In subsection 2.1.2, we have mentioned the MA−surfaces which were defined by R. Mal-

gouyres in [58]. In fact, these digital surfaces belong to the family of thin and separating

subsets of Z3 which were defined as digital surfaces by several authors. Briefly, the idea of

these definitions was to give some local characterizations which guarantee that an object,

the voxels of which all satisfy these local characterizations, will have a thinness property

and also separates its background in two connected components (see Definition 3.7 and

Theorem 4 for the 2D analogue to the separating notion). The thinness property being

enunciated as follows : each voxel of the object is adjacent to both components of its

background. Such objects are usually called strongly separating sets. Now, R. Malgouyres

proved in [60] that no local characterization of the full class of strongly separating sets

can be found. Thus, there is no hope to find an analogue in Z3 to the local characteriza-

tion of a simple closed curve given by A. Rosenfeld in [89] which is the two dimensional

analogue of the class of strongly separating sets (see subsection 2.1.3).

However, several definitions have been introduced for some more restrictive object classes

than the strongly separating one which, themselves, admit some local characterizations.

Thus, D.G. Morgenthaler and A. Rosenfeld first introduced the notion of a simple closed

n−surface for n ∈ {6, 26} in [76]. Later, in [61], R. Malgouyres introduced the definition

of the MA−surfaces, and finally, more recent works with G. Bertrand leaded to the

definition of strong surfaces which are proved to be the less restrictive ones (see [67, 68]).

Now, we are here interested in this part by a definition of digital surfaces which is different
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from the latter ones. Indeed, in this Part, we no longer consider surfaces as subsets of

Z3 but as particular subsets of R6. Indeed, we will show in the following that some of

these subsets can be considered as a kind of digital space with some convenient adjacency

relations.

4.2 Digital surfaces, surfels

Digital surfaces are made of unit square faces, called surfels, which are the basic elements

of the visible parts of an object of Z3 when depicted as a set of voxels.

Definition 4.1 (surfel) Let B ⊂ Z3, then a couple (a, b) such that a ∈ B, b ∈ B and a

is 6−adjacent to b, is called a surfel of B.

A surfel is in fact the common face shared by two 6−adjacent voxels, the first one be-

longing to the object, the second one to its background (see Figure 4.1). Note that such

a face is oriented according to the outward normal from its center and this definition of a

surfel is close to the classical one which can be found for example in [103], and restricted

to the 3D case. In fact, we call a voxel face the unit square shared by any two 6−adjacent

voxels, but a surfel is the oriented common face shared by two 6−adjacent voxels, where

the first one is a voxel of an object and the second one is a voxel of the complement of this

object. A voxel may be associated to at most six surfels (see Figure 4.2) depending on

the value of its 6−neighbors, and each surfel has four edges and four vertices as depicted

in Figure 4.3.

a b(a,b)

Figure 4.1: A surfel (a, b), common face

shared by a black voxel and a white one.

Figure 4.2: A voxel may be associated

with at most six surfels.
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vertexsurfelvoxel edge

Figure 4.3: Few terms

Now, we introduce the notion of the border between a black and a white connected

component of a digital image in Z3, using the same notation as in [104].

Definition 4.2 (border) Let {n, n} = {6+, 18}. Then, let O be an n−connected subset

of Z3 and V be one of its background components. We define the (n, n)−border between

O and V , denoted by δn(O, V ) :

δn(O, V ) = {(a, b) | a ∈ O, b ∈ V and a is 6−adjacent to b}

In the sequel of this part O and V are two subsets of Z3 which satisfy the conditions of

Definition 4.2 and Σ = δn(O, V ) is the (n, n)−border between O and V for n ∈ {6+, 18}
which will be called a digital surface.

The digital surface Σ has the Jordan property, according to the definition given in [103].

Indeed, any 6−path π = (yk)k=0,...,p from a voxel y0 of O to a voxel yp of V is such that

there exists j ∈ {0, . . . , p− 1} with yj ∈ O and yj+1 ∈ V , in other words π exists through

Σ.

Observe that this definition is very close to the definition of a cellular complex. However,

an important property of a digital surface is that its surfels are constrained by some

geometrical consideration in Z3. Reader should keep in mind that a surfel is nothing but

one of the following couples for some (x, y, z) ∈ Z3 :

((x, y, z), (x± 1, y, z)), ((x, y, z), (x, y ± 1, z)), ((x, y, z), (x, y, z ± 1)).

4.3 Adjacency relations between surfels

In this section, we introduce the two adjacency relations between surfels which will allow

the definition of further tools used in our study of the topological properties within digital

surfaces.



70 CHAPTER 4. Digital boundaries (surfaces)

4.3.1 e−adjacency relation

A surfel in a digital surface shares a given edge with at most three other surfels as depicted

in Figure 4.4 (this result is generalized to digital boundaries in Zn in Proposition 3.5

of [103]). This leads to the definition of the following relation Redge :

Definition 4.3 (Redge) We define the adjacency relation Redge in Σ as follows :

Redge =



((a, b), (a′, b′))

(a, b) ∈ Σ, (a′, b′) ∈ Σ, (a, b) 6= (a′, b′)

a, b, a′ and b′ belong to a common 2× 2 square of Z3





a’

b
b’

a

ii) iii) iv)i)

Figure 4.4: The surfel (a, b) may share one of its edges with at most 3 other surfels.

Thus, the surfel (a, b) of Figure 4.4 shares the marked edge either with the surfel (b′, b)

(case i), with the surfel (a′, b′) (case ii), with the surfel (a, a′) (case iii), or simultaneously

with the surfels (b′, b), (b′, a′) and (a, a′) in the case iv. This relation is an adjacency

relation on the digital space Σ. However, as recalled in the introduction of this part, we are

interested by the characterization of topology preservation for subsets of digital surfaces.

But it has appeared that no convenient topological properties can be derived for this

digital space together with the Redge adjacency relation. Indeed, the adjacency relations

used for the digital spaces Z2 and Z3 have the good properties to be strictly related to

the space distribution of the spels. However, the relation Redge leads to some unusable

adjacency graphs. Furthermore, connectivity between surfels was first introduced in

order to design some efficient boundary tracking algorithms which allow the retrieval of

the visible boundaries of an object of Z3. For this purpose, Redge also has important

drawbacks. Indeed, the fact that too many paths in the adjacency graph pass through a

given surfel prevents the existence of an efficient algorithm based on local computation

which could retrieve the boundary of an object. However, we can define an adjacency

relation Re between surfels, which depends on the n−adjacency relation considered for

the object (n ∈ {6+, 18}), in such a way that a surfel has exactly four Re−neighbors, i.e.
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exactly one per edge . The definition of this classical regular graph on Σ can be found

for instance in [92] and is as follows :

Definition 4.4 (Re) Let (a, b) and (a′, b′) be two surfels of Σ. The surfels (a, b) and

(a′, b′) are said to be Re−adjacent if ((a, b), (a′, b′)) ∈ Redge and :

• If (n, n) = (6+, 18) then a and a′ are 6−connected by a 6−path with a length l < 3 in

O.

• If (n, n) = (18, 6+) then b and b′ are 6−connected by a 6−path with a length l < 3 in

V .

A pair {(a, b), (a′, b′)} of Re−adjacent surfels of Σ is called an edgel.

Notation 4.1 In the sequel, and in order to avoid heavy notations, we will abbreviate

the adjacency relation “Re” by simply “e”, abbreviating for example Re−adjacency by

e−adjacency.

It is important to see that the definition of the e−adjacency relation follows the topolog-

ical properties of the object wrapped in the surface. Indeed, the following theorem which

is in fact a justification of the boundary tracking algorithms, was proved by E. Artzy

in [4] and using topological consideration by G.T. Herman in [41]. This theorem will be

be useful in the sequel.

Theorem 6 Σ is e−connected.

Now, another approach to the e−connectivity property of Σ can be given. Indeed,

we defined Σ as the set of spels between an n−connected set of voxels and one of

its (n−connected) background components. Then, an important result is that Σ is

e−connected. But a converse property is also true. Let B ⊂ Z3 and S be the set of the

surfels of B. Then, any e−connected component of surfels of S coincides with some border

δn(I, E), where I is an n−connected component of B and E is an n−connected component

of B. Thus, the objects of Figure 4.5(a) and 4.5(b) are both not (6+)−connected so that

the set of their surfels is not e−connected, following the definition of e−connectivity in

the case when (n, n) = (6+, 18). Now, the object depicted in Figure 4.6 is 18−connected

so that the set of its surfels is e−connected for (n, n) = (18, 6+).

Furthermore, these two objects are made of two 6−connected components with no cav-

ity. More generally, it is clear that for any object B in Z3 and any couple (n, n) ∈
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(a) (b)

Figure 4.5: Two objects of Z3 and the e−adjacency

graphs of their sets of surfels for n = 6+.

Figure 4.6: An object of

Z3 and the e−adjacency

graph of its set of surfels

for n = 18.

{(n, n), (n, n)}, the number of e−connected components of the set of surfels of B (i.e

the number (n, n)−borders) is equal to the number of n−connected components of B

plus the number of n−connected components of B minus one. For example, the hollow

ball depicted in Figure 4.7(a) has two (18, 6+)−borders whereas the object depicted in

Figure 4.8 has three ones.

(a) View of the outside surface. (b) A cut view of the hollow ball.

Figure 4.7: A hollow ball in Z3 for n = 18.

Now, following Definition 4.4, e−paths and e−connectivity within digital surfaces are

well defined following the generic definitions given in Section 1.1.
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(a) View of the outside surface. (b) A cut view of the object.

Figure 4.8: An object of Z3 with two connected components and a cavity for n = 18.

4.3.2 v−adjacency relation

Now, an object in a digital surface can be seen as a binary picture drawn on the boundary

of a subset of Z3 as depicted in Figure 4.9. Then, in our investigations of the topological

properties of such pictures, we should expect that some basic properties hold, like for

example some kind of a Jordan property which was described for the spaces Z2 and Z3

in Chapter 2. Thus, let C be the set of black surfels of Figure 4.9. This set is a simple

closed e−curve according to Definition 1.13 and one should expect that such a set, in

this particular case1, separates its background (the set of white surfels) in two distinct

components. However, as it occurred in Z2, this is obviously not true if e−adjacency

is used for the background of the image since the three surfels marked with a cross are

not pairwise e−connected so that the background of C has in this case four e−connected

components.

Again, this shows the need of the introduction of another adjacency relation between

surfels which links two surfels which share a vertex, in other words, an analogue to the

8−adjacency relation in Z2. Indeed, the e−adjacency in a planar digital surface coincides

with the 4−adjacency relation in Z2 as illustrated by Figure 4.10. However, the following

definition will not be satisfying.

Definition 4.5 (Rvertex) We define the adjacency relation Rvertex ⊂ Σ× Σ as follows :

Rvertex =



((a, b), (a′, b′))

(a, b) ∈ Σ, (a′, b′) ∈ Σ, (a, b) 6= (a′, b′)

a, b, a′ and b′ belong to a common 2×2×2 cube of Z3





In other words, the surfels (a, b) and (a′, b′) are Rvertex−adjacent if they share a vertex.

1The purpose of Chapter 7 is to precise why this case can be said to be particular
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Figure 4.9: In black, a simple closed e−curve C

of surfels, the background of which is made of four

e−connected components.

Figure 4.10: The upper part

of the surface can be seen as a

rectangle of Z2.

Remark 4.1 The data of one vertex p of a surfel (a, b) is equivalent to the data of one

of the four 2×2×2 cubes which contain the two voxels a and b. Indeed, this 2×2×2 cube

will also contain any two voxels a′ and b′ such that (a′, b′) share with (a, b, ) the vertex p.

However, this relation again has the important drawback that it links some sets of surfels

the continuous analogue of which should not be connected as depicted by Figure 4.11.

In Figure 4.12, we have depicted two objects in Z3, in which, when (n, n) = (6+, 18),

the two voxels marked with a cross are not (6+)−adjacent. However, in the case of

Figure 4.12(a), the two surfels marked with a cross are Rvertex−adjacent whereas they are

not in Figure 4.12(b). Since this is obviously not satisfying, we define a more restrictive

adjacency relation Rv.

Definition 4.6 (Rv) Let (a, b) and (a′, b′) be two surfels of Σ. Then ((a, b), (a′, b′)) ∈ Rv

if and only if ((a, b), (a′, b′)) ∈ Rvertex , and there exists an e−path ((a0, b0), . . . , (ak, bk)) in

Σ such that (a0, b0) = (a, b), (ak, bk) = (a′, b′) and for i = 1, . . . , k − 1, ((ak, bk), (a, b)) ∈
Rvertex and ((ak, bk), (a

′, b′)) ∈ Rvertex .

It is then immediate that the surfels in {(a0, b0), . . . , (ak, bk)} all share a unique vertex

since each surfel (ai, bi) for i ∈ {0, . . . , k} belongs to the only 2×2×2 cube which contains

the four voxels a, b, a′ and b′.

Now, we give another but equivalent definition of the Rv−adjacency relation which uses
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Figure 4.11: Two voxels which are nei-

ther (6+)−adjacent nor 18−adjacent

whereas they define some surfels which

are Rvertex−adjacent.

(a) (b)

Figure 4.12: Two objects the digital sur-

faces of which have the same topological

properties for (n, n) = (6+, 18).

the definition of a loop in a digital surface. Furthermore, the notion of a loop will be useful

in the sequel since the set of surfels it defines will be used as the elementary deformation

cell (see the definition of such cells in section 2.2.2) within digital surfaces.

Definition 4.7 (Loop) A loop L in Σ is an e−connected set of surfels which share a

given vertex p. Now, let x be a surfel of Σ, a be an edge of x and p be a vertex of a.

Then, there exists a single surfel x′, e−adjacent to x and which share the vertex p and

the edge a with x. Now, a third surfel x′′ 6= x, e−adjacent to x′ shares p with x and x′.

By repeating this process, it is possible to build a simple closed e−path π from x to x such

that π∗ = L is a loop of Σ. The path π is called a parameterization of the loop L.

Now, the following definition is equivalent to Definition 4.8.

Definition 4.8 (Rv) Let x ∈ Σ and y ∈ Σ. The two surfels x and y are said to be

Rv−adjacent if there exists a loop L of Σ such that {x, y} ⊂ L.

Then, from the very definitions of the e−adjacency and the loops, we obtain that the two

surfels marked with a cross in Figure 4.12(b) are Rv−adjacent if Σ is an (18, 6+)−border

whereas they are not Rv−adjacent if Σ is a (6+, 18)−border.

Notation 4.2 In the sequel, and in order to avoid heavy notations, we will abbreviate

the relation “Rv” by simply “v”.
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One can see that a vertex is not sufficient to uniquely define a loop since a vertex can

be associated with two distinct loops. Indeed, if we consider the (18, 6+)−border Σ of

the object of Figure 4.13, and where all the voxels are visible; then the black vertex

defines two loops. The first one is made of the six visible surfels which share this vertex

and the second one is made of three hidden surfels. By the same way, it we consider

the (6+, 18)−border of the same object, this vertex defines three distinct loops of three

surfels each.

4.4 The fundamental group in a digital surface

At this step, all the notions which have been introduced in Part I for a digital space

together with some complementary adjacency relations (e−adjacency and v−adjacency)

are well defined except homotopy of paths (and so neither the digital fundamental group).

Following the steps of the definition given in subsection 2.2.2, we must first define ele-

mentary deformation cells for digital surfaces.

Notation 4.3 In the sequel of this Part, and when no more precision is given, the prefix

“n−” stands for either “e−” or “v−”, and no more for any adjacency relation in Z2 or

Z3. We may shorten this by writing n ∈ {e, v}.

4.4.1 Deformation cell and assumption about Σ

Figure 4.13: Example of a loop.

Definition 4.9 (elementary deformation cell in Σ) An elementary

n−deformation cells (for n ∈ {e, v}) in a digital surface Σ is a loop of Σ.

Now, the latter definition leads to the following formulation of Definition 2.10 : two

n−paths in a subset X of a digital surface Σ with same extremities are said to be equiv-
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alent up to an elementary n−deformation if they are the same but in a loop of Σ (see

Figure 4.14).

c c’

c,c’

Figure 4.14: Illustration of an elemen-

tary e−deformation.

Figure 4.15: The two surfels of this

(18, 6+)−border marked with a cross

are not e−adjacent but belong to two

distinct loops.

Definition 4.9 also allows to define R−homotopy for paths of surfels where R ∈ {Re,Rv}
as illustrated in Figure 4.16. Thus, the e−path c1 of Figure 4.16(a) is an elementary

e−deformation of the e−path c2 of Figure 4.16(b). Finally, the path c1 is e−homotopic

to the e−path c3 of Figure 4.16(c).

X = { , } ⊂ Σ

c1 :

(a)

c2 :

(b)

c3 :

(c)

Figure 4.16: Example of e−homotopic paths in a subset X of a digital surface Σ.

Now, in the case when Σ = δ(18,6+)(O, V ) (i.e. O is 18−connected), we avoid some special

configurations by the assumption that any loop of the surface is a topological disk so

that the situation depicted in Figure 4.17 may not occur (see [70]). A formal way to

express this assumption is to say that two v−adjacent surfels which are not e−adjacent

cannot both belong to two distinct loops (see Figure 4.15). An equivalent formulation

can be stated as follows : we assume that Σ = δ18(O, V ) and if there exists in O two

18−adjacent voxels which are not 6−adjacent then, at least one of the two following

properties is satisfied :
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• The two voxels have an 18−neighbor in O in common.

• The voxels have two common 26−neighbors in O which are themselves 26−adjacent.

Figure 4.17: A case when the continuous analogue of a loop is not a topological disk

This restriction is necessary and sufficient to ensure that a loop is a topological disk.

We need a similar restriction on O when Σ = δ6+(O, V ). In the sequel, we refer to the

following remark :

Remark 4.2 Exactly one loop of Σ may contain two surfels which are v−adjacent but

not e−adjacent.

4.4.2 Some examples

In the sequel of this part we will prove that the digital fundamental group, which can be

used to define simple surfels in a digital surface, is also sufficient to characterize lower

homotopy in this space. In order to illustrate this notion, we give here some examples

of objects in a digital surface whose fundamental groups are not isomorphic. Thus, the

object X1 depicted in Figure 4.18 is simply connected according to Definition 2.13. In

other words, for any surfel x ∈ X1, the digital fundamental group Πn
1 (X1, x) is reduced

to the class of the trivial path (x, x). Then, the object X2 of Figure 4.19 is not simply

connected since it is clear for any surfel x ∈ X2, there exists a closed path from x which

is not reducible in X2. In the object X3 of Figure 4.20, and for any surfel x ∈ X3 one

can show that there exists three elements in Πn
1 (X3, x) such that each one cannot be

expressed as a product involving the two others.
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(a) In grey, a subset X1 ⊂ Σ1. (b) The set X1.

Figure 4.18: X1 is a simply n−connected set of surfels.

(a) In grey, a subset X2 ⊂ Σ2. (b) The set X2.

Figure 4.19: X2 is not simply n−connected.

(a) In grey, a subset X3 ⊂ Σ3. (b) The set X3.

Figure 4.20: X2 is not simply n−connected. Furthermore, for any p2 ∈ X2 and p3 ∈ X3,

the groups Πn
1 (X2, p2) and Πn

1 (X3, p3) are not isomophic.





Chapter 5

Topology preservation within digital

surfaces

In this chapter we will recall some works of R. Malgouyres and A. Lenoir about the def-

inition and the characterization of topology preservation for subsets of a digital surface.

Observe that such works were motivated by the formal justification of the thinning al-

gorithm they used in order to extract some anatomical data from an image of the mean

curvature computed at the surface of the brain.

In [70], Malgouyres and Lenoir gave three equivalent characterizations of homotopy, which

was defined using a classical definition of simple surfels using local connectivity properties.

In the context of digital surfaces, as well as in the context of 3D objects, homotopy can be

understood as a particular case of deformation retract as defined for cellular complexes.

Now, in the field of digital surfaces, topology preservation and especially lower homotopy

becomes harder to characterize compared to the 2D case, this because digital surfaces and

their subsets may have tunnels. Indeed, whereas subsets of Z2 were fully topologically

characterized using some connectivity considerations only, subsets of digital surfaces, as

well as subsets of Z3, are also characterized by the number and the position of their

tunnels. Tunnel are not simple to define in a formal way, nevertheless some intuitive idea

of what they are can be given. Indeed, we will say that the object of Figure 5.1(a) has a

tunnel whereas the object of Figure 5.1(b) does not. Furthermore, it is clear that such a

property cannot be characterized by the only use of connectivity considerations. Indeed,

each of previous objects is connected and has no cavity.

In this chapter, X is a subset of a digital surface Σ.
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(a) (b)

Figure 5.1: Illustration of the notion of a tunnel.

5.1 Simple surfels and homotopy

: x, : Nv(x)

Figure 5.2: The v−neighborhood of

a surfel.

(a) Front view (b) Back view

: x, : Nv(x)

Figure 5.3: A surfel the v−neighborhood of

which is not a topological disk.

Let x be a surfel of Σ. As previously set in Section 4.4, we assume that any loop in Σ is a

topological disk. However, the v−neighborhood of the surfel x is not always a topological

disk. In Figure 5.2 we have depicted the v−neighborhood Nv(x) of a given surfel and in

Figure 5.3 we have depicted a surfel the neighborhood of which is not a topological disk

since the two surfels marked with a cross in this Figure 5.3(b) are e−adjacent. In such

a case, we have to define a “topology” on Nv(x) ∪ {x} under which it is a topological

disk. Then, we will use a particular graph in Nv(x) defined using the following adjacency

relation.

Definition 5.1 (nx−adjacency relation) Let x ∈ Σ and let y and y′ be two surfels

of Nv(x) ∪ {x}. We say that y and y′ are nx−adjacent if they are n−adjacent and are
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contained in a common loop which contains x (see Figure 5.4).

For example, in Figure 5.3(b), the two surfels marked with a cross are neither ex−adjacent

nor vx−adjacent if x is the black surfel of Figure 5.3(a).

: x

Figure 5.4: The two surfels marked with a cross are ex−adjacent.

Definition 5.2 (Gn(x,X)) Let x ∈ Σ and (n, n) ∈ {(e, v), (v, e)}. We denote by

Gn(x,X) the set of the nx−connected components of Nv(x) ∩X. Observe that Gn(x,X)

is a set of subsets and not a set of surfels. We will denote by Cx
n[Gn(x, X)] the set of all

the nx−connected components of Gn(x,X) which contain a surfel n−adjacent to x.

In Figure 5.5(c) we have depicted the three ex−connected components of Ge(x,X) as-

sociated with the surfel x and the set X of Figure 5.5(a). Observe that the connected

component of Ge(x,X) which is reduced to a single surfel is not e−adjacent to x so that

Cx
e [Ge(x,X)] has only two elements.

(a) x and X (b) Nv(x) ∩X (c) x and the three ex−connected compo-

nents of Ge(x,X)

x : X :

Figure 5.5: Example of a set Ge(x,X).

R. Malgouyres and A. Lenoir proposed the following definition of a simpleness property

for surfels (a surfel x in X is said to be n−interior to X if Gn(x, X) = 0, it is called

n−isolated if Gn(x,X) = 0).
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Definition 5.3 (simple surfel [70]) A surfel x is called n−simple in X if and only

if the number Card(Cx
n[Gn(x,X)]) of nx−connected components of Gn(x,X) which are

n−adjacent to x is equal to 1, and if x is not n−interior to X.

Remark 5.1 Similarly with the 2D case, if the surfel x is neither n−isolated nor

n−interior then we have Card(Cx
n[Gn(x,X)]) = Card(Cx

n[Gn(x, X)]).

In Figure 5.6 we have depicted several examples of v−neighborhoods of n−simple and

not n−simple surfels in a surface Σ. These examples may summarize some of the results

of [70]. Indeed, we observe that the removal of the black surfel x of Figure 5.6(b) leads to

the creation of an e−connected component in X ∪{x} so that this surfel is not v−simple

for the set X considered. We also observe that the removal of the surfel x of Figure 5.6(d)

would create an e−connected component of X for (n, n) = (e, v). Still in Figure 5.6(d)

but for (n, n) = (v, e) we can say that the removing the surfel x would either disconnect

the object X or remove a tunnel of X depending on the existence of a v−path in X

between the surfels of Nv(x) ∩X which are not v−connected in Nv(x) ∩X.

The Definition 5.3 leads to the definitions of lower and symmetric homotopy introduced

in Chapter 3. Lower homotopy has been also defined in a similar way in [70] as follows :

Definition 5.4 (lower homotopy) Let Y ⊂ X ⊂ Σ. The set Y is said to be lower

n−homotopic to X if and only if Y can be obtained from X by sequential deletion of

n−simple surfels.

This notion of homotopy allows to define topology-preserving thinning algorithms within

subsets of a digital surface. Note that this definition of topology preservation relies on the

definition of simple surfels. The definition of a simple surfel which was previously recalled

follows the classical conditions which prevent local disconnection or local re-connection.

In [70], a justification of the latter definition for simple surfels is given using the Euler

characteristic, saying that a surfel is simple if its contribution to the Euler characteristic

of the object is equal to zero.

Now, the two following sections will provide some characterizations of lower homotopy

for objects in a digital surface.
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� � � � �
� � � � �

� � � �
� � � �

e−simple

not v−simple since Card(Cx
e [Ge(x, X)]) = 0

(a)

� � � � �
� � � � �

� � � �
� � � �

not e−simple since Card(Cx
e [Ge(x,X)]) = 2

not v−simple since Card(Cx
e [Ge(x, X)]) = 0

(b)

� � � � �
� � � � �

� � � �
� � � �

e−simple

not v−simple since Card(Cx
v [Gv(x,X)]) = 2

(c)

� � � � �
� � � � �

� � � �
� � � �

not e−simple since Card(Cx
e [Ge(x,X)]) = 2

not v−simple since Card(Cx
v [Gv(x,X)]) = 2

(d)

x : X : , X :

Figure 5.6: Examples of n−simple and not n−simple surfels for (n, n) ∈ {(e, v), (v, e)}.
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: X, : X

(a)

: X, : Y

(b)

: Y

(c)

Figure 5.7: A subset Y of X which is lower n−homotopic to X for n ∈ {e, v}.

5.2 Euler characteristic and lower homotopy

In Chapter 9, we will need to define precisely what we call a topological disk and a

topological sphere in the context of digital surfaces. For this purpose, we will use the

classical notion of Euler characteristic which has been defined for this framework in [70].

Furthermore, we will recall the characterization of lower homotopy within digital surfaces

which involves this classical topological invariant. In this section X is a subset of Σ and

n ∈ {e, v}.

Definition 5.5 ({0, 1, 2}−cells) We associate a dimension to surfels, edgels and loops

which is equal respectively to 2, 1 and 0. We can identify a surfel x with the set {x}. We

call a surfel a 2−cell, an edgel a 1−cell and a loop a 0−cell.

Definition 5.6 (Elementary Euler n−characteristic of a cell) For d ∈ {0, 1, 2}
and for c a d−cell, we define the elementary Euler characteristic of c in X denoted by

χd
n(X, c) as follows :

χd
n(X, c) = (−1)d.Card(Cn(c ∩X)).

Note that the only case in which χd
n(X, c) can be different from 0, 1 and −1 is when c

is a loop and n = e. If EΣ and LΣ are respectively the sets of edgels and loops of Σ, we

denote :

χ2
n(X) =

∑
s∈Σ

χ2
n(X, s), χ1

n(X) =
∑
ε∈EΣ

χ1
n(X, ε) and χ0

n(X) =
∑

l∈LΣ

χ0
n(X, l).

Definition 5.7 (Euler n−characteristic) We define the Euler n−characteristic of X,

and we denote by χn(X) the following quantity :

χn(X) = χ0
n(X) + χ1

n(X) + χ2
n(X) = Card(X) + χ1

n(X) + χ2
n(X).
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For example, the Euler n−characteristic associated to a set X constituted by two surfels

which are v−adjacent but not e−adjacent is equal to 2 if n = e (χe(X) = 2 − 8 + 8)

whereas it will be equal to 1 if n = v (χv(X) = 2− 8 + 7).

The following theorem has been proved in [70], which provides a computable characteri-

zation of lower homotopy within digital surfaces :

Theorem 7 ([70]) If Y ⊂ X ⊂ Σ are n−connected, then the following properties are

equivalent :

i) Y is lower n−homotopic to X.

ii) χn(X) = χn(Y ) and each n−connected component of Y contains a surfel of X.

Thus, let X and Y be the subsets of a surface Σ as depicted in Figure 5.8. The set Y

is not lower n−homotopic to X since, although the only n−connected component of Y

does contain a surfel of X, its Euler n−characteristic (equal to zero) is different from X’s

one.

X : { , } Y : X :

X

Y

Figure 5.8: χn(X) = −1 and χn(Y ) = 0 for n ∈ {e, v}.

5.3 Digital fundamental group and homotopy

Theorem 7 provides a characterization which allows us to check the lower homotopy

property between two subsets of a digital surface. Now, the definition of homotopy was

initially stated using the notion of simple surfel, itself derived from the definition of simple

pixels in Z2. The characterization of lower-homotopy using the Euler characteristic then
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validates this definition and shows that it is convenient : indeed, sequential deletion of

simple surfels does not change the number of connected components as well as the number

of tunnels in the surface. However, the 3D case shows that the Euler characteristic, even

if it has the good property of being easily computable and allows to count the number

of tunnels in the surface, does not provides some information about the localization of

the tunnels. This important drawback motivates the study of another characterization

of topology preservation using some other topological invariants.

One purpose of [70] was to provide another characterization of lower homotopy within

digital surfaces which involves the digital fundamental group. Finally, the following

theorem has been proved in [70].

Theorem 8 ([70]) Let Y ⊂ X be two n−connected subsets of Σ. The set Y is lower

n−homotopic to X if and only if the two following properties are satisfied for any surfel

B ∈ Y :

i) The morphism i∗ : Πn
1 (Y, B) −→ Πn

1 (X, B) induced by the inclusion map i : Y −→
X is an isomorphism.

ii) Each n−connected component of Y contains a surfel of X.

And the proof of the latter theorem uses the following Lemma.

Lemma 5.1 ([70]) Let X ⊂ Σ, and let x ∈ X be an n−simple surfel of X. Then, for

any B ∈ X \ {x}, the group morphism i∗ : Πn
1 (X \ {x}, B) −→ Πn

1 (X,B) induced by the

inclusion of X \ {x} in X is a group isomorphism.

We recall the following lemma which is a straightforward consequence of Theorem 7 (see

Section 5.2) and Theorem 8.

Lemma 5.2 Let Z be an n−connected subset of Σ, then the following conditions are

equivalent :

i) There exists z in Z such that {z} is lower n−homotopic to Z.

ii) Z has exactly one n−connected component and χn(Z) = 1.

iii) Z 6= Σ and Πn
1 (Z, B) = {[(B,B)]} for all B ∈ Z.
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iv) Z 6= Σ and χn(Z) = 1.

Lemma 5.2 leads to the definitions of a topological disk and a topological sphere.

Definition 5.8 An n−connected subset Z of Σ is called a topological disk if it satisfies

the four conditions of Lemma 5.2.

Definition 5.9 If Z = Σ and χn(Z) = 2, we say that Z is a topological sphere.

Let X and Y be the two subsets of the surface depicted in Figure 5.8. One can see that

Theorem 8 allows to check that the object Y is not lower n−homotopic to X. Indeed,

let B be the surfel marked with a cross in Figure 5.9, then the class of the path c of

Figure 5.9 in Πn
1 (X, B) can obviously not be reached by the morphism i∗ induced by the

inclusion of Y in X. This because no closed path of AB
n (Y ) is n−homotopic to the closed

path c in X. Then, i∗ is not onto and, Theorem 8 implies that the set Y is not lower

n−homotopic to X.

B : , c :

c

Figure 5.9: A closed path c in the set X of Figure 5.8.

5.4 Conclusion of Chapter 4 and Chapter 5

We have defined in the two previous chapters a new framework for topology preserva-

tion problems which was motivated by a practical application : homotopic thinning of

a binary picture drawn on the surface of a 3D object. However, since [70], it was still a

conjecture that the digital fundamental group was sufficient to characterize lower homo-

topy within digital surfaces. In other words, it was intuitively stated that the condition

ii) of Theorem 8 was in fact implied by the condition i), except in a very particular case.
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The proof of what becomes a theorem is given in Chapter 9 and was first published by

the author and R. Malgouyres in [31] in a slightly different way than the one given here.

Finally, the more concise version of the proof which is presented here has been submitted

for publication ([30]). This proof involves a new tool the definition of which is given in

the next Chapter : the intersection number.

In order to show the usefulness of this tool before its definition, we give here in intuitive

words a way to prove the following affirmation : “This because no closed path of AB
n (Y )

is n−homotopic to the closed path c.”. Indeed, suppose that we have defined the number

of real intersections Iπ,c between two paths of surfels π and c (in a similar way to the

definition of the winding number in Section 2.1.2). Now, suppose that we have also proved

that this number cannot change when an homotopic deformation is applied to one of the

two paths. Then it becomes easy to prove that no e−path in the set Y of Figure 5.8

is n−homotopic to the path c of Figure 5.9. Indeed, let π be the closed v−path in X

depicted in Figure 5.10. It appears that Iπ,c = ±1 6= 0. Now, suppose that there exists

in Y an e−path c′ which is homotopic to c in X. Then, we should have Ic,π = Ic′,π.

However, it is obvious that c′, included in Y , has an intersection number with π equal to

zero. Finally, this implies that such a path c′ cannot exist.

Y :

π :

c :

Figure 5.10: No closed path in Y can be n−homotopic in Σ to the closed path c.



Chapter 6

Intersection number

In this chapter, we introduce a new tool for proving theorems in the framework of digital

surfaces which has been first introduced in Fourey & Malgouyres 99[32]. The main idea of

this tool is to count the number of real intersections between a v−path and an e−path.

Again, we have to use two complementary adjacencies notably in order to avoid the

classical topological paradox of paths which could cross without intersecting each other.

Furthermore, the intersection number will be used in proofs, for example in order to show

that a given n−path π is not reducible in an object, and this will be possible by showing

the existence of a closed n−path in the object which has an intersection number with π

different from zero.

Indeed, like mentioned at the end of the previous Chapter, the main property of this

number is that it is left unchanged when one apply an homotopic deformation to any of

the two paths. Because of this property, it may be called a new topological invariant of

the digital framework.

In this chapter, Σ denotes a digital surface as defined in Chapter 4.

6.1 Definition

In order to define oriented intersections, we first define an orientation for surfels and then

what we call the local “left side” and the local “right side” of an n−path.

Notation 6.1 (Vertices and oriented edges) Since a surfel has four vertices, we can

order these vertices as in [92] by distinguishing one vertex for each of the six types of

surfels and impose a turning order for vertices around the outward normal to the surfel
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(the counterclockwise order). Each vertex of a given surfel is thus associated with a

number in {0, 1, 2, 3} (see Figure 6.1). With this parameterization of vertices we can

define oriented edges as couples of consecutive vertices according to the cyclic order. So,

for each surfel, we have the four following oriented edges : (0, 1), (1, 2), (2, 3) and (3, 0).

For an e−path π = (yk)k=0,...,p and for k ∈ {0, . . . , p}, we define frontπ(k) when yk 6= yk+1

[resp. backπ(k) when yk 6= yk−1] as the oriented edge of the surfel yk shared as an edge

by yk and yk+1 [resp. yk and yk−1]. Note that backπ(0) and frontπ(p) are not defined if π

is not closed.

Notation 6.2 For a surfel x and a given vertex number w ∈ {0, 1, 2, 3} we denote by

Lw(x) the unique loop associated with the vertex w of x which contains the surfel x.

0

3 1

2
0

3

2

1
2

0
1

2
3

2 3

3
0

1
3 2

0 1

01

Figure 6.1: Parameterization of the vertices for each type of surfel so that the oriented

edges are (0, 1), (1, 2), (2, 3) and (3, 0).

The next lemma will allow us to introduce the notion of a canonical parameterization of

the v−neighborhood of a surfel.

Lemma 6.1 Let x be a surfel of Σ. Then, Nv(x) is a simple closed ex−curve.

Proof : We prove that for any surfel y of Nv(x), there are exactly two surfels z1 and z2

in Nv(x) such that y is ex−adjacent to z1 and z2.

Let y be a surfel of Nv(x). First, we suppose that y and x are not e−adjacent. Then,

from Remark 4.2, only one loop L of Σ may contain both x and y. Let z1 and z2 be the

only (from the very definition of a loop) two surfels of L which are e−adjacent to y. It

follows that z1 and z2 are the only two surfels e−adjacent to y which can belong to a loop

which contains x. In other words, z1 and z2 are the only two surfels ex−adjacent to y.
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Now, we may suppose that x and y are e−adjacent. Then, we may suppose without loss

of generality that y shares as an edge with x the oriented edge (0, 1) of y. Then, exactly

two loops contain both x and y : L0(y) and L1(y). Let z1 be the (unique) surfel of Σ

which shares as and edge with y the oriented edge (3, 0) of y; and let z2 be the (unique)

surfel of Σ which shares as and edge with y the oriented edge (1, 2) of y. It is immediate

that {z1, z2} ⊂ Nv(x) and z1 6= z2. Obviously the surfel z3 which share as an edge with

y the oriented edge (2, 3) can belong neither to L1 nor to L2. Finally, z1 and z2 are the

only two surfels of Σ which are ex−adjacent to y.

Furthermore, we must state that Nv(x) is ex−connected. This comes immediately from

the fact that Nv(x) is made of the union of the four loops which contain x, minus the

surfel x itself. Now, the loops can be ordered following the vertices order; each one is

e−connected and shares a surfel with its successor in the latter order. It follows that the

union (minus {x}) introduced before is ex−connected. 2

In order to illustrate the latter lemma, we have depicted in Figure 6.2 the ex−adjacency

graph G of Nv(x) where x is a surfel the neighborhood of which is a simple closed ex−curve

but not a simple closed e−curve.

x

G

Figure 6.2: Front and back views of a surface Σ = δ18(O, V ), a surfel x (in black), and

the graph G of ex−adjacency in Nv(x).

Now, given a surfel y in Nv(x), there exists exactly two parameterizations (see Defini-

tion 1.13) π = (yk)k=0,...,p and π′ = (y′k)k=0,...,p′ of the simple closed ex−curve C = Nv(x)

such that y0 = y′0. Furthermore, is is immediate that π−1 = π′ (see Figure 6.3). Then,

we can define as follows a canonical parameterization of the neighborhood of a surfel x

which starts at a given surfel y of Nv(x).

Definition 6.1 (canonical parameterization of Nv(x)) Let x ∈ Σ and y ∈ Nv(x).

We define the canonical parameterization of Nv(x) associated to the surfel y, denoted

by Cy(x), as the only ex−path π = (y0, . . . , yp) from y = y0 to y = yp such that π
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is a parameterization of the simple closed ex−curve C = Nv(x) and which satisfies the

following property : for all k ∈ {0, . . . , p − 1}, x ∈ Lwk
(yk) where (wk − 1 mod 4, wk) is

the oriented edge of yk shared as an edge by yk and yk+1.

In other words, Cy(x) is the only ex−path π from y to y in Nv(x) such that x is always

on the left of π for an observer which would walk on π and always look in the direction of

the next surfel in the parameterization. In the case of Figure 6.3, we obtain that Cy0(x) is

the ex−path π′. Indeed, arrows in the lower part of this figure depict the oriented edges

of yi [resp. y′i] shared as edges by yi and yi+1 [resp. y′i and y′i+1] for i ∈ {0, . . . , 10}.

N (x)

’π

v

y

x

π

0

y

y

y y
y

y

y

y

7

y = y
0 9

6 5

4

3

2

1

8

y’

y’

y’ y’
y’

y’

y’

y’y’=y’
0 9

1

2

3
4

5

6

7

8

Figure 6.3: The two parameterizations π = (y0, . . . , y9) and π′ = (y′0, . . . , y
′
9) of Nv(x)

from y to y.

We can now define locally, at each point yk of an n−path π, the locals left and right sides

of π on the surface, taking into account the orientation of the surface. These local left

and right sets are subsets of the v−neighborhood of the surfel yk.
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Definition 6.2 (local left and right sets) Let π = (yk)k=0,...,p be an n−path for n ∈
{e, v} and k ∈ {1, . . . , p− 1} (k ∈ {0, . . . , p} if π is closed). Then, let γ = (γ0, . . . , γl) =

Cyk−1
(yk) be the canonical parameterization of Nv(yk) associated to yk−1. Let h be the

only integer in {1, . . . , l} such that yk+1 = γh. We define the sets of surfels Leftπ(k) and

Rightπ(k) by :

If l = h (i.e yk−1 = yk+1) then Leftπ(k) = Rightπ(k) = ∅, otherwise,

Rightπ(k) = Nv(yk) ∩ {γi | 0 < i < h− 1}
Leftπ(k) = Nv(yk) ∩ {γi | h + 1 < i < l}

Note that both sets Rightπ(0) and Leftπ(0) are not defined in the case when π is not closed

(since the notation yi−1 has no meaning for i = 0 in this case).

A few examples of such sets Leftπ(k) and Rightπ(k) are depicted in Figure 6.5 for some

e−paths and in Figure 6.6 for some v−paths which are not e−paths.

Observe that it is intuitively impossible to properly define the left and right sides of a walk

when one only knows the previous and the next positions which are identical. However,

we simply define these sets as empty sets in this case (see Figure 6.4).

n
πRight  (k)

??
?

?

?

?

??

Left  (k)n
π

yk π

Figure 6.4: Illustration of the case when the local left an right sides are both defined as

empty.

Now, the three following remarks are straightforward consequences of the latter definition.

Remark 6.1 If c = (xi)i=0,...,q is an n−path [resp. a closed n−path] and i ∈ {1, . . . , q−1}
[resp. i ∈ {0, . . . , q}] is such that xi+1 and xi−1 are e−adjacent, then either Right c(i) = ∅
and Left c(i) = Nv(xi)\{xi−1, xi+1}; or Left c(i) = ∅ and Right c(i) = Nv(xi)\{xi−1, xi+1}.
See Figure 6.5(c) for an example of such a situation. Conversely, one of these two sets

may be empty only when the the two surfels xi−1 and xi+1 are either equal or e−adjacent.
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Remark 6.2 If c = (xi)i=0,...,q is an n−path on Σ, then Left c(i) ∩ Right c(i) = ∅ for all

i ∈ {1, . . . , q − 1} (for all i ∈ {0, . . . , q − 1} if c is closed).

Remark 6.3 If c = (xi)i=0,...,q is an n−path on Σ and xi is a surfel of c such that xi−1

and xi+1 are neither equal nor nxi
−adjacent; then the sets Left c(i) and Right c(i) are both

non empty and each contains a surfel which is n−adjacent to xi.

Two examples of configurations which satisfy the latter remark are depicted in Fig-

ure 6.5(a) and Figure 6.6(a). Indeed, the two surfels xi−1 and xi+1 of Figure 6.6(a) are

not vx−adjacent so that Left c(i) ∩ Ne(x) 6= ∅ and Right c(i) ∩ Ne(x) 6= ∅. Finally, some

counter examples are depicted in Figure 6.5(c) and Figure 6.6(b).

(a) (b) Leftπ(k) = ∅. (c) Leftπ(k) = ∅.

Right  (k)

Left  (k)

yk-1 yk+1

ky

π

π

Figure 6.5: Some illustrations of the sets Leftπ(k) and Rightπ(k) where π = (yk)k=0,...,p.

(a) (b) Rightc(i)∩Ne(x) = ∅. (c) Ne(x) ⊂ Leftc(i) and

Rightc(i) ∩Ne(x) = ∅.

xi-1 xi+1

ix

Right  (i)

Left  (i)
c

c

Figure 6.6: Some illustrations of the sets Left c(i) and Right c(i) where c = (xi)i=0,...,q is a

v−path which is not an e−path.

The following property is the necessary and sufficient condition which will allow the

definition of the intersection number between two paths.
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Notation 6.3 Let π = (yk)k=0,...,p be an n−path and c = (xi)i=0,...,q be an n−path in Σ.

We say that the property P(π, c) is satisfied if in case when π is not closed then neither

y0 nor yp belongs to c∗.

Now we define the contribution to the intersection number of a couple of subscripts.

Definition 6.3 (contribution to the intersection number) Let π = (yk)k=0,...,p be

an n−path and c = (xi)i=0,...,q be an n−path such that P(π, c) holds. Let k ∈ {0, . . . , p−
1} and i ∈ {0, . . . , q}. We define the contribution to the intersection number of the

couple (k, i) denoted by Iπ,c(k, i) which is equal to zero if xi 6= yk, otherwise Iπ,c(k, i) =

I−π,c(k, i) + I+
π,c(k, i) where :

I−π,c(k, i) = 0 if i = 0,

I−π,c(k, i) = 0.5 if xi−1 ∈ Rightπ(k),

I−π,c(k, i) = −0.5 if xi−1 ∈ Leftπ(k),

I−π,c(k, i) = 0 in all other cases.

I+
π,c(k, i) = 0 if i = q,

I+
π,c(k, i) = −0.5 if xi+1 ∈ Rightπ(k),

I+
π,c(k, i) = 0.5 if xi+1 ∈ Leftπ(k),

I+
π,c(k, i) = 0 in all other cases.

Note that Iπ,c(k, i) = 0 if xi−1 = xi+1 or yk−1 = yk+1 (since Leftπ(k) = Rightπ(k) = ∅ in

this case).

Note that I−π,c(k, i) depends on the position of xi−1 relative to the n−path π at the surfel

yk, and I+
π,c(k, i) depends on the position of xi+1. Also observe that Iπ,c(0, i) = 0 for all

i ∈ {0, . . . , q} if π is not closed since P(π, c) implies that xi 6= y0 for all i ∈ {0, . . . , q}
in this case. Indeed, otherwise Iπ,c(0, i) would not be defined when π is not closed and

xi = y0.

Definition 6.4 (Intersection Number) Let π = (yk)k=0,...,p be an n−path and let c =

(xi)i=0,...,q be a n−path such that the property P(π, c) holds. The intersection number of

the n−path π and the n−path c, denoted by Iπ,c, is defined by :

Iπ,c =

p−1∑

k=0

q∑
i=0

Iπ,c(k, i) =

p−1∑

k=0

∑

i|xi=yk

Iπ,c(k, i) =

q∑
i=0

∑

k|xi=yk

Iπ,c(k, i).

Notation 6.4 Let π = (yk)k=0,...,p be an n−path and c = (xi)i=0,...,q be an n−path such

that P(π, c) holds, then, for h ∈ {0, . . . , p} and l ∈ {0, . . . , q} we denote :

Iπ
π,c(l) =

p−1∑

k=0

Iπ,c(k, l) and Ic
π,c(h) =

q∑
i=0

Iπ,c(h, i).

We have depicted in Figure 6.7 and Figure 6.8 two examples of pairs of paths. Although

any closed path in the digital surface of Figure 6.7 is reducible in the whole surface,
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this is not true in the surface of Figure 6.8. Indeed, the two paths drawn in this figure

have an intersection number of ±1 depending on their parameterization, and this will be

sufficient (using the properties which will be stated in the sequel) to prove that they are

not reducible.

Figure 6.7: A v−path c (in grey)

and an e−path π (in black) such

that Iπ,c = 0.

Figure 6.8: A v−path c and an

e−path π such that Iπ,c = ±1.

Remark 6.4 The intersection number Iπ,c is not defined when the path π = (yk)k=0,...,p

is not closed and some surfels of c belong to {y0, yp} (i.e. when P(π, c) is not satisfied).

However, Iπ,c is well defined in the case when c = (xi)i=0,...,q is not closed and π∗ contains

one or both of x0 and xq. In the latter case, Iπ,c may not be an integer (see Figure 6.9).

π

c

π and c

Figure 6.9: The intersection Ic,π is not defined since π∗ contains one extremity of c.

However, Iπ,c = ±0.5.

Remark 6.5 From the very definition of Iπ,c, we have Iπ,c = 0 as soon as π or c is a

trivial path (Definition 1.12).
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In further proof, we will use the following Definition.

Definition 6.5 Let π be an n−path in Σ and π′ = (y′0, y
′
1) be an n−path in Σ with a

length 1. We say that π′ enters π if y′0 /∈ π∗ and y′1 ∈ π∗; and we say that π′ exits π if

y′0 ∈ π∗ and y′1 /∈ π∗.

6.2 Main Properties

In this section, we introduce the main theorems relative to the intersection number which

was first stated in [32] and [30] with a less comprehensive proof. Indeed, the proofs which

will be given here are more concise then the ones in previously mentioned papers.

Theorem 9 Let π = (yk)k=0,...,p be an n−path in Σ (n ∈ {e, v}). Furthermore, let

c = (xi)i=0,...,q and c′ = (x′i)i=0,...,q′ be two n−paths such that P(π, c) and P(π, c′) hold. If

c′ is n−homotopic to c in Σ (in Σ \ {y0, yp} if π is not closed), then Iπ,c = Iπ,c′.

In other words, the intersection number between an n−path π and an n−path c, as

defined in previous subsection, is invariant under any homotopic deformation applied to

the path c. First, we prove the following Proposition which states that the intersection

number has a commutative property (up to a change of sign).

Proposition 6.2 Let π = (yk)k=0,...,p be an n−path of Σ and c = (xi)i=0,...,q be an n−path

of Σ such that both P(π, c) and P(c, π) hold. Then, Iπ,c = −Ic,π.

The Property stated by Theorem 9 can be used together with Proposition 6.2 to show

that a closed n−path α (n ∈ {e, v}) is not n−homotopic to a trivial path by finding an

n−path β whose intersection number with α is not equal to zero. More generally, it can

be used to distinguish two not n−homotopic paths if their intersection numbers with a

third n−path are different.

Indeed, the following theorem is an immediate consequence of both Theorem 9 and Propo-

sition 6.2.

Theorem 10 Let π = (yk)k=0,...,p and π′ = (y′k)k=0,...,p′ be two n−paths in Σ (n ∈ {e, v}).
Furthermore, let c = (xi)i=0,...,q be an n−path such that the properties P(π, c), P(π′, c),

P(c, π), and P(c, π′) hold. If π′ is n−homotopic to π in Σ (in Σ \ {x0, xq} if c is not

closed), then Iπ,c = Iπ′,c.
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Proof : From Proposition 6.2 and since P(π, c) and P(c, π) hold we have Iπ,c = −Ic,π.

On the other hand, still from Proposition 6.2 and since P(π′, c) and P(c, π′) hold we have

Iπ′,c = −Ic,π′ . Finally, from Theorem 9, since P(c, π) and P(c, π′) hold; and since π′ is

n−homotopic to π in Σ (in Σ \ {x0, xq} if c is not closed) then Ic,π = Ic,π′ . 2

The proof of Theorem 9 will come after the following section which states several useful

properties of the intersection number.

6.3 Useful Properties

6.3.1 Change of sign with path inversion

Proposition 6.3 Let π be an n−path and c be an n−path such that P(π, c) holds. Then

Iπ,c = −Iπ−1,c.

In order to prove Proposition 6.3, we first state the following Lemmas.

Lemma 6.4 Let π = (yk)k=0,...,p be an n−path in Σ. Then, Leftπ(k) = Rightπ−1(p − k)

and Rightπ(k) = Leftπ−1(p − k) for all k ∈ {1, . . . , p − 1}. Furthermore, if π is closed,

then Leftπ(0) = Rightπ−1(0) and Rightπ(0) = Leftπ−1(0).

Proof : Let π = (yk)k=0,...,p and π−1 = (y′k)k=0,...,p.

If π is closed, then y0 = y′0, y1 = y′p−1 and yp−1 = y′1. Let β = Cyp−1(y0) = (β0, . . . , βl0)

be the canonical parameterization of Nv(y0) associated to yp−1. And let h0 be the only

integer of {1, . . . , l0} such that yp−1 = βh0 . If h0 = l0 it is immediate that Leftπ(0) =

Rightπ−1(0) = Rightπ(0) = Leftπ−1(0) = ∅. If h0 < l0 then it is also immediate that

β′ = (βh0 , βh0+1, . . . , βl0).(β0, β1, . . . , βh0) is the canonical parameterization of Nv(y
′
0) =

Nv(y0) associated to the surfel y′p−1 = y1 (see Definition 6.1). Finally, from Definition 6.2,

Leftπ(0) = Rightπ−1(0) and Rightπ(0) = Leftπ−1(0).

Now, for all k ∈ {1, . . . , p − 1} we observe that yk = y′p−k, yk−1 = y′(p−k)+1 and yk+1 =

y′(p−k)−1 . For such k, let γ = Cyk−1
(yk) = (γ0, . . . , γl) be the canonical parameterization of

Nv(yk) associated to yk−1. And let h be the only integer of {1, . . . , l} such that yk+1 = γh.

If h = l it is immediate that Leftπ(k) = Rightπ−1(p−k) = Rightπ(k) = Leftπ−1(p−k) = ∅.
If h < l then it is also immediate that γ′ = (γh, γh+1, . . . , γl).(γ0, γ1, . . . , γh) is the

canonical parameterization of Nvy
′
p−k = Nvyk associated to the surfel y′(p−k)−1 = yk+1 (see
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Definition 6.1). Finally, from Definition 6.2, Leftπ(k) = Rightπ−1(p− k) and Rightπ(k) =

Leftπ−1(p− k). 2

Lemma 6.5 Let π = (yk)k=0,...,p be an n−path with a length p in Σ and c = (xi)i=0,...,q be

an n−path with a length q in Σ such that P(π, c) holds. Then, Iπ,c(k, i) = −Iπ−1,c(p−k, i)

for all k ∈ {1, . . . , p−1} and all i ∈ {0, . . . , q}. If π is closed, then Iπ,c(0, i) = −Iπ−1,c(0, i)

for all i ∈ {0, . . . , q}.

Proof : Let π−1 = (y′0, . . . , y
′
p). From Lemma 6.5, Rightπ(k) = Leftπ−1(p − k) and

Leftπ(k) = Rightπ−1(p − k) for all k ∈ {1, . . . , p − 1}. Then, following Definition 6.3,

we have Iπ,c(k, i) = −Iπ−1,c(p − k, i) for all i ∈ {0, . . . , q}. If π is closed and still from

Lemma 6.4 and Definition 6.3, we have Rightπ(0) = Leftπ−1(0) and Leftπ(0) = Rightπ−1(0)

so that Iπ,c(0, i) = −Iπ−1,c(0, i) for all i ∈ {0, . . . , q}. 2

Proof of Proposition 6.3 : Let π = (y0, . . . , yp), π−1 = (y′0, . . . , y
′
p) and c = (x0, . . . , xq).

Iπ,c =

[
q∑

i=0

Iπ,c(0, i)

]
+

p−1∑

k=1

q∑
i=0

Iπ,c(k, i) (6.1)

Iπ−1,c =

[
q∑

i=0

Iπ−1,c(0, i)

]
+

p−1∑

k=1

q∑
i=0

Iπ−1,c(p− k, i) (6.2)

Following Lemma 6.5, we have Iπ,c(k, i) = −Iπ−1,c(p − k, i) for all k ∈ {1, . . . , p − 1}
and all i ∈ {0, . . . , q}. Furthermore, if π is not closed and since P(π, c) holds, then

Iπ,c(0, i) = Iπ−1,c(0, i) = 0 for all i ∈ {0, . . . , q} (since xi 6= y0 for such i). If π is closed

and still from Lemma 6.5, we have Iπ,c(0, i) = −Iπ−1,c(0, i) for all i ∈ {0, . . . , q}. Finally,

Iπ,c = −Iπ−1,c from equations (6.1) and (6.2). 2

Proposition 6.6 Let π = (yk)k=0,...,p be an n−path and c = (xi)i=0,...,q be an n−path

such that P(π, c) holds; then Iπ,c = −Iπ,c−1.

In order to prove Proposition 6.6, we first establish the following Lemma.

Lemma 6.7 Let π = (yk)k=0,...,p be an n−path with a length p in Σ and c = (xi)i=0,...,q be

an n−path with a length q in Σ such that P(π, c) holds. Then, Iπ,c(k, i) = −Iπ,c−1(k, q−i)

for all k ∈ {0, . . . , p− 1} and all i ∈ {0, . . . , q}.
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Proof : Let c−1 = (x′0, . . . , x
′
q) so that for all i ∈ {0, . . . , q} we have xi = x′q−i.

• For i ∈ {1, . . . , q − 1} we observe that xi = x′q−i, xi−1 = x′(q−i)+1, xi+1 = x′(q−i)−1.

Thus from Definition 6.3 and for such i, we have Iπ,c(k, i) = −Iπ,c−1(k, q − i) for all

k ∈ {0, . . . , p− 1}.
• For i = 0, since x0 = x′q and x1 = x′q−1 we also have Iπ,c(k, 0) = I+

π,c(k, 0) =

−I−π,c−1(k, q) = −Iπ,c−1(k, q − 0) for all k ∈ {0, . . . , p− 1}.
• For i = q, since xq = x′0 and xq−1 = x′1 we also have Iπ,c(k, q) = I−π,c(k, q) =

−I+
π,c−1(k, 0) = −Iπ,c−1(k, q − q) for all k ∈ {0, . . . , p− 1}.

Finally, for all k ∈ {0, . . . , p−1} and all i ∈ {1, . . . , q−1} we have Iπ,c(k, i) = −Iπ,c(k, q−
i). 2

Proof of Proposition 6.6 : Let c−1 = (x′0, . . . , x
′
q) so that for all i ∈ {0, . . . , q} we

have xi = x′q−i. Then,

Iπ,c =

p−1∑

k=0

q∑
i=0

Iπ,c(k, i)

But, from Lemma 6.7, Iπ,c(k, i) = −Iπ,c−1(k, q − i) for all i ∈ {0, . . . , q} and all k ∈
{0, . . . , p− 1}. It is then immediate that,

Iπ,c =

p−1∑

k=0

q∑
i=0

−Iπ,c−1(k, i) = −Iπ,c−1

2

6.3.2 Commutativity property

In further proofs, we will use Proposition 6.2 which was introduced in Section 6.2 and

which sates that swapping the roles played by the two paths in the definition of the

intersection number leads to a change of the sign of this intersection number, when such

a permutation is possible. Indeed, in the case when π is closed and c is not closed, then

if an extremity of c belongs to π∗ the intersection number Iπ,c is well defined whereas the

number Ic,π is not. The idea of this commutativity property is summarized in Figure 6.10

where one can say that c crosses π from left to right by observing one of the two following

statements :

– c enters π from the left side at the point a and exits π to the right side of π at the point

b, or
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– π enters c from the right side of c at the point a and exits c to the left side of c at the

point b.

a

b

c
π

Figure 6.10: There are two ways to check that c crosses π from left to right.

We recall Proposition 6.2 :

Proposition 6.2 Let π = (yk)k=0,...,p be an n−path of Σ and c = (xi)i=0,...,q be an n−path

of Σ such that both P(π, c) and P(c, π) hold. Then, Iπ,c = −Ic,π.

In order to prove this very intuitive result, we must state several technical lemmas.

Lemma 6.8 Let π = (yk)k=0,...,p be an n−path of Σ and c = (xi)i=0,...,q be an n−path of

Σ such that both P(π, c) and P(c, π) hold. For all k ∈ {1, . . . , p− 1} (k ∈ {0, . . . , p− 1}
if π is closed) and all i ∈ {1, . . . , q − 1}, we have Iπ,c(k, i) = −Ic,π(i, k).

Proof of Lemma 6.8 : Following Definition 6.3, the cases when xi 6= yk, xi−1 = xi+1

or yk−1 = yk+1 are immediate since in these cases Iπ,c(k, i) = Ic,π(i, k) = 0. Thus, we

suppose in the sequel of this proof that xi = yk, xi−1 6= xi+1, yk−1 6= yk+1. By the same

way, if xi−1 = yk−1 and xi+1 = yk+1, or if xi−1 = yk+1 and xi+1 = yk−1 it is immediate that

Iπ,c(k, i) = Ic,π(i, k) = 0. Then we may also suppose that {yk−1, yk+1} 6= {xi−1, xi+1};
the following cases remain :

Case 1 xi−1 = yk−1 (see Figure 6.11) so that I−π,c(k, i) = I−c,π(i, k) = 0. Then, let γ =

(γ0, . . . , γl) = Cyk−1
(yk) = Cxi−1

(xi) be the canonical parameterization of Nv(yk) =

Nv(xi) and h be the only integer in {1, . . . , l} such that yk+1 = γh. Following

assumptions made before, xi+1 /∈ {γ0 = γl, γh}.

If xi+1 = γj for 0 < j < h then xi+1 ∈ Rightπ(k) and h > j implies that

yk+1 ∈ Left c(i) (see Definition 6.2). From Definition 6.3, it follows that I+
π,c(k, i) =

−I+
c,π(i, k) = 0.5 and finally Iπ,c(k, i) = −Ic,π(i, k).

If xi+1 = γj for h < j < l then xi+1 ∈ Leftπ(k) and j > h implies that yk+1 ∈
Right c(i) (see Definition 6.2). From Definition 6.3, it follows that I+

π,c(k, i) =

−I+
c,π(i, k) = 0.5 so that Iπ,c(k, i) = −Ic,π(i, k).
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Case 2 xi−1 = yk+1 (see Figure 6.11) so that I−π,c(k, i) = I−c,π(i, k) = 0. We observe that

Iπ,c(k, i) = −Iπ−1,c(p − k, i) and Ic,π(i, k) = −Ic,π−1(i, p − k) (Lemma 6.5). Thus,

we must prove that Iπ−1,c(p − k, i) = Ic,π−1(i, p − k). Now, let π−1 = (y′0, . . . , y
′
p)

then yk = y′p−k and yk+1 = y′(p−k)−1 and we are came down to the previous case at

subscript p− k of π−1.

Case 3 xi+1 = yk+1 (see Figure 6.11) so that I+
π,c(k, i) = I+

c,π(i, k) = 0. We observe

that Iπ,c(k, i) = −Iπ−1,c(p − k, i) = Iπ−1,c−1(p − k, q − i) (from Lemma 6.5 and

Lemma 6.7), by the same way Ic,π(i, k) = Ic−1,π−1(q− i, p− k). It is then sufficient

to prove that Iπ−1,c−1(p−k, q− i) = −Ic−1,π−1(p−k, q− i). If c−1 = (x′0, . . . , x
′
q) and

π−1 = (y′0, . . . , y
′
q) then, on a first hand xi = x′q−i, xi+1 = x′(q−i)−1, xi−1 = x′(q−i)+1.

On the other hand, yk = y′p−k mod p, yk−1 mod p = y′(p−k)+1 mod p and yk+1 mod p =

y′(p−k)−1 mod p. We are came back to case 1 with the subscripts (p − k mod p) and

(q − i mod p) so that this cases is equivalent to case 1.

Case 4 xi+1 = yk−1 (see Figure 6.11) so that I+
π,c(k, i) = I+

c,π(i, k) = 0. We observe that

Iπ,c(k, i) = −Iπ,c−1(k, q − i) and Iπ,c(c, π) = −Ic−1,π(q − i, k) (Lemma 6.7). It is

then sufficient to prove that Iπ,c−1(k, q − i) = Ic−1,π(q − i, k). If c−1 = (x′0, . . . , x
′
q)

then xi = x′q−i, xi−1 = x′(q−i)+1 and xi+1 = x′(q−i)−1 so that this cases is equivalent

to case 1.

Case 5 If {xi+1, xi−1} ∩ {yk−1, yk+1} = ∅.

Let γ = (γ0, . . . , γl) = Cyk−1
(yk) be the canonical parameterization of Nv(yk) and

h be the only integer in {1, . . . , l} such that yk+1 = γh. Then there exists m and

m′ such that γm = xi−1 and γm′
= xi+1. Since, {xi+1, xi−1} ∩ {γ0 = γl, γh} = ∅ it

follows that {m,m′} ⊂ {1, . . . , h− 1} ∪ {h + 1, . . . , l − 1}. The following cases are

illustrated in Figure 6.12.

i) If 1 < m < m′ < h then

γ′ = (γm, . . . , γm′
).(γm′

, . . . , γh).(γh, . . . , γl).(γ0, . . . , γm)

is the canonical parameterization Cxi−1
(xi) of Nv(xi). It follows that {xi−1, xi+1} ⊂

Rightπ(k) and {γ0 = yk−1, γ
h = kk+1} ⊂ Left c(i). Finally, from Definition 6.3, we

obtain that Iπ,c(k, i) = Ic,π(i, k) = 0.
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ii) If 1 < m′ < m < h then

γ′ = (γm, . . . , γh).(γh, . . . , γl).(γ0, . . . , γm′
).(γm′

, . . . , γm)

is the canonical parameterization Cxi−1
(xi) of Nv(xi). It follows that {xi−1, =

xi+1} ⊂ Rightπ(k) and {γl = yk−1, γ
h = kk+1} ⊂ Left c(i). Finally, from Defini-

tion 6.3, we obtain that Iπ,c(k, i) = Ic,π(i, k) = 0.

iii) If h < m < m′ < l then

γ′ = (γm, . . . , γm′
).(γm′

, . . . , γl).(γ0, . . . , γh).(γh, . . . , γm)

is the canonical parameterization Cxi−1
(xi) of Nv(xi). It follows that {xi−1, xi+1} ⊂

Leftπ(k) and {γ0 = yk−1, γ
h = kk+1} ⊂ Left c(i). Finally, from Definition 6.3, we

obtain that Iπ,c(k, i) = −Ic,π(i, k) = 0.

iv) If h < m′ < m < l then

γ′ = (γm, . . . , γl).(γ0, . . . , γh).(γh, . . . , γm′
).(γm′

, . . . , γm)

is the canonical parameterization Cxi−1
(xi) of Nv(xi). It follows that {xi−1, xi+1} ⊂

Leftπ(k) and {γl = yk−1, γ
h = kk+1} ⊂ Right c(i). Finally, from Definition 6.3, we

obtain that Iπ,c(k, i) = −Ic,π(i, k) = 0.

v) If 0 < m < h < m′ < l then

γ′ = (γm, . . . , γh).(γh, . . . , γm′
).(γm′

, . . . , γl).(γ0, . . . , γm)

is the canonical parameterization Cxi−1
(xi) of Nv(xi). It is then straightforward that

xi−1 ∈ Rightπ(k), xi+1 ∈ Leftπ(k), yk−1 = γ0 ∈ Left c(i) and yk+1 = γh ∈ Right c(i).

Finally, from Definition 6.3, we obtain that Iπ,c(k, i) = −Ic,π(i, k) = +1.

vi) If 0 < m′ < h < m < l then

γ′ = (γm, . . . , γl).(γ0, . . . , γm′
).(γm′

, . . . , γh).(γh, . . . , γm)

is the canonical parameterization Cxi−1
(xi) of Nv(xi). It follows that xi−1 ∈ Leftπ(k),

xi+1 ∈ Rightπ(k), yk−1 = γ0 ∈ Right c(i) and yk+1 = γh ∈ Left c(i). Finally, from

Definition 6.3, we obtain that Iπ,c(k, i) = −Ic,π(i, k) = −1.

2
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π-1c-1
c-1π-1

π
c

Case 2Case 1 Case 4Case 3

Figure 6.11: An illustration of the cases investigated in the proof of Lemma 6.8 when

{xi−1, xi+1} ∩ {yk−1, yk+1} 6= ∅

vi)v)iv)iii)ii)i)

π

c

Figure 6.12: An illustration of the cases investigated in the proof of Lemma 6.8 when

{xi−1, xi+1} ∩ {yk−1, yk+1} = ∅

The following definition will allow us to use Lemma 6.8 for closed paths at subscripts

corresponding to the extremities of either the path c or the path π of this lemma when

the path is closed.

Definition 6.6 (shift operation) Let π = (yk)k=0,...,p be a closed n−path in Σ with a

length p > 1. We denote by Sh(π) the closed n−path (yp−1, y0, . . . , yp−1) which is the

result of a shift of π of one step in the opposite direction of its parameterization.

Then, the two following Lemmas will be of interest in the sequel.

Lemma 6.9 Let π = (yk)k=0,...,p be a closed n−path and c = (xi)i=0,...,q be an n−path in

Σ. If π has a length p > 1, then Iπ,c(0, i) = ISh(π),c(1, i) for all i ∈ {0, . . . , q}.

Corollary 6.10 Let π = (yk)k=0,...,p be a closed n−path and c = (xi)i=0,...,q be an n−path

in Σ, then Iπ,c = ISh(π),c.

Proof of Lemma 6.9 : Let Sh(π) = (y′0, . . . , y
′
p) so that yp−1 = y′0, y0 = y′1 and

y1 = y′2. It follows that Rightπ(0) = RightSh(π)(1) and Leftπ(0) = LeftSh(π)(1) so that

Iπ,c(0, i) = ISh(π),c(1, i) for all i ∈ {0, . . . , q}. 2
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Lemma 6.11 Let π = (yk)k=0,...,p be an n−path and c = (xi)i=0,...,q be a closed n−path in

Σ. If c has a length q > 1, then Iπ,Sh(c)(k, 1) = Iπ,c(k, 0)+Iπ,c(k, q) for all k ∈ {0, . . . , p}.

Corollary 6.12 Let π = (yk)k=0,...,p be an n−path and c = (xi)i=0,...,q be closed n−path

in Σ, then Iπ,c = Iπ,Sh(c).

Proof of Lemma 6.11 : Let Sh(c) = (x′0, . . . , x
′
q) so that xq−1 = x′0, x0 = x′1 and

x1 = x′2.

We have Iπ,Sh(c)(k, 1) = I−π,Sh(c)(k, 1) + I+
π,Sh(c)(k, 1). Since x0 = x′1 and xq−1 = x′0 it

follows that I−π,Sh(c)(k, 1) = I−π,c(k, q) for all k ∈ {0, . . . , p}. Furthermore, since x0 = x′1

and x1 = x′2 it follows that I+
π,Sh(c)(k, 1) = I+

π,c(k, 0) for all k ∈ {0, . . . , p}.
Finally, Iπ,Sh(c)(k, 1) = I+

π,c(k, 0)+I−π,c(k, q) for all k ∈ {0, . . . , p}; but from Definition 6.3,

I+
π,c(k, 0) = Iπ,c(k, 0) and I−π,c(k, q) = Iπ,c(k, q). 2

Then, in order to prove Proposition 6.2 we will need the two following lemmas which

state the behavior of the contributions to the intersection number at the extremities of

each path π and c of the Proposition.

Lemma 6.13 Let π = (yk)k=0,...,p be a closed n−path and c = (xi)i=0,...,q be an n−path

in Σ. Then Iπ,c(0, i) = −(Ic,π(i, 0) + Ic,π(i, p)) for all i ∈ {1, . . . , q − 1}.

Proof : From Lemma 6.9, Iπ,c(0, i) = ISh(π),c(1, i). From Lemma 6.8 and for all i ∈
{1, . . . , q−1}, ISh(π),c(1, i) = −Ic,Sh(π)(i, 1). Now, since π is closed and from Lemma 6.11,

−Ic,Sh(π)(i, 1) = −(Ic,π(i, 0) + Ic,π(i, p)). 2

Lemma 6.14 Let π = (yk)k=0,...,p be closed n−path and c = (xi)i=0,...,q be closed n−path

in Σ. Then Iπ,c(0, 0) + Iπ,c(0, q) = −(Ic,π(0, 0) + Ic,π(0, p))

Proof : From Lemma 6.9, Iπ,c(0, 0) + Iπ,c(0, q) = ISh(π),c(1, 0) + ISh(π),c(1, q) and from

Lemma 6.11, ISh(π),c(1, 0) + ISh(π),c(1, q) = ISh(π),Sh(c)(1, 1). Then, following Lemma 6.8,

ISh(π),Sh(c)(1, 1) = −ISh(c),Sh(π)(1, 1). Again, Lemma 6.9 implies that −ISh(c),Sh(π)(1, 1) =

−Ic,Sh(π)(0, 1) whereas Lemma 6.11 implies that −Ic,Sh(π)(0, 1) = −(Ic,π(0, 0)+Ic,π(0, p)).

Finally, we have obtained that Iπ,c(0, 0) + Iπ,c(0, q) = −(Ic,π(0, 0) + Ic,π(0, p)). 2
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Proof of Proposition 6.2 : The sum of Definition 6.4 may be written as follows :

Iπ,c = Iπ,c(0, 0) + Iπ,c(0, q) +

q−1∑
i=1

Iπ,c(0, i) + (6.3)

p−1∑

k=1

[
Iπ,c(k, 0) + Iπ,c(k, q) +

q−1∑
i=1

Iπ,c(k, i)

]

• If π is closed then Lemma 6.13 implies that Iπ,c(0, i) = −Ic,π(i, 0) − Ic,π(i, p) for

i ∈ {1, . . . , q − 1}. Then,

q−1∑
i=1

Iπ,c(0, i) = −
q−1∑
i=1

[Ic,π(i, 0) + Ic,π(i, p)]. Furthermore, from

Lemma 6.8, Iπ,c(k, i) = −Ic,π(i, k) for all k ∈ {1, . . . , p − 1} and all i ∈ {1, . . . , q − 1}.
Thus, equation (6.3) becomes :

Iπ,c = Iπ,c(0, 0) + Iπ,c(0, q) +

q−1∑
i=1

−(Ic,π(i, 0) + Ic,π(i, p)) + (6.4)

p−1∑

k=1

[
Iπ,c(k, 0) + Iπ,c(k, q) +

q−1∑
i=1

Ic,π(i, k)

]

– If c is closed, then Lemma 6.13 implies that Ic,π(0, k) = −(Iπ,c(k, 0)+Iπ,c(k, q)) for

k ∈ {1, . . . , p− 1} so that equation (6.4) becomes :

Iπ,c = Iπ,c(0, 0) + Iπ,c(0, q)−
q−1∑
i=1

[Ic,π(i, 0) + Ic,π(i, p)] + (6.5)

p−1∑

k=1

[
−Ic,π(0, k)−

q−1∑
i=1

Ic,π(i, k)

]

If π and c are closed paths, it follows from Lemma 6.14 that Iπ,c(0, 0)+Iπ,c(0, q) =

Ic,π(0, 0) + Ic,π(0, p). Then,

Iπ,c = −(Ic,π(0, 0) + Ic,π(0, p))−
q−1∑
i=1

[Ic,π(i, 0) + Ic,π(i, p)] + (6.6)

p−1∑

k=1

[
−Ic,π(0, k)−

q−1∑
i=1

Ic,π(i, k)

]

Iπ,c = −
q−1∑
i=0

[Ic,π(i, 0) + Ic,π(i, p)]−
p−1∑

k=1

q−1∑
i=0

Ic,π(i, k) (6.7)

Iπ,c = −
q−1∑
i=0

Ic,π(i, 0)−
q−1∑
i=0

Ic,π(i, p)−
p−1∑

k=1

q−1∑
i=0

Ic,π(i, k) (6.8)

Iπ,c = −
p∑

k=0

q−1∑
i=0

Ic,π(i, k) = −Ic,π
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– If c is not closed and since P(c, π) holds, then Ic,π(0, k) = Iπ,c(k, 0) = Iπ,c(k, q) = 0

for all k ∈ {0, . . . , p}. Then, equation (6.4) becomes :

Iπ,c =

q−1∑
i=1

−(Ic,π(i, 0) + Ic,π(i, p))−
p−1∑

k=1

q−1∑
i=1

Ic,π(i, k)

Iπ,c = −
q−1∑
i=1

Ic,π(i, 0)−
q−1∑
i=1

Ic,π(i, p))−
p−1∑

k=1

q−1∑
i=1

Ic,π(i, k)

Iπ,c = −
p∑

k=0

q−1∑
i=1

Ic,π(i, k) = −
q−1∑
i=1

p∑

k=0

Ic,π(i, k)

Since Ic,π(0, k) = 0 for all k ∈ {0, . . . , p},

Iπ,c = −
q−1∑
i=0

p∑

k=0

Ic,π(i, k) = −Ic,π

• If π is not closed and since P(π, c) holds, then Iπ,c(0, i) = Iπ,c(p, i) = Ic,π(i, 0) =

Ic,π(i, p) = 0 for i ∈ {0, . . . , q} so that

q∑
i=0

Iπ,c(0, i) = 0. Then, equation (6.3) becomes :

Iπ,c =

p−1∑

k=1

[
Iπ,c(k, 0) + Iπ,c(k, q) +

q−1∑
i=1

Iπ,c(k, i)

]

From Lemma 6.8, Iπ,c(k, i) = −Ic,π(i, k) for all k ∈ {1, . . . , p−1} and all i ∈ {1, . . . , q−1}.

Iπ,c =

p−1∑

k=1

[
Iπ,c(k, 0) + Iπ,c(k, q)−

q−1∑
i=1

Ic,π(i, k)

]
(6.10)

– If c is closed, then Lemma 6.13 implies that Iπ,c(k, 0) + Iπ,c(k, q) = −Ic,π(0, k) for

all k ∈ {1, . . . , p− 1} and equation (6.10) becomes :

Iπ,c =

p−1∑

k=1

q−1∑
i=0

−Ic,π(i, k) =

q−1∑
i=0

p−1∑

k=1

−Ic,π(i, k)

Furthermore, Ic,π(i, 0) = Ic,π(i, p) = 0 for all i ∈ {0, . . . , q} since π is not closed

and P(π, c) holds, so that :

Iπ,c =

q−1∑
i=0

p∑

k=0

−Ic,π(i, k) = −Ic,π

– If c is not closed then Iπ,c(k, 0) = Iπ,c(k, q) = 0 for all k ∈ {0, . . . , p} since P(c, π)

holds, then equation (6.10) becomes :

Iπ,c = −
p−1∑

k=1

q−1∑
i=1

Ic,π(i, k)
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From Lemma 6.8, Iπ,c(k, i) = −Ic,π(i, k) for all k ∈ {1, . . . , p − 1} and all i ∈
{1, . . . , q − 1}. Then,

Iπ,c = −
q−1∑
i=1

p−1∑

k=1

Ic,π(i, k) = −Ic,π

2

6.3.3 An additive property

The following proposition will be useful in further proofs.

Proposition 6.15 Let π = (yk)k=0,...,p be an n−path on Σ; let c = (xi)i=0,...,q and c′ =

(x′i)i=0,...,q′ be two n−paths on Σ such that xq = x′0. If P(π, c) and P(π, c′) hold, then

Iπ,c.c′ = Iπ,c + Iπ,c′.

Proof of Proposition 6.15 : Let us compute Iπ,c.c′ with c.c′ = (z0, . . . , zq+q′).

It is sufficient to prove that for k ∈ {1, . . . , p− 1} (k ∈ {0, . . . , p} if π is closed) :

q+q′∑
i=0

Iπ,c.c′(k, i) =

q∑
i=0

Iπ,c(k, i) +

q′∑
i=0

Iπ,c′(k, i) (6.11)

We simply write that for k ∈ {0, . . . , p− 1} (k ∈ {0, . . . , p} if π is closed) :

q+q′∑
i=0

Iπ,c.c′(k, i) = Iπ,c.c′(k, 0) +

[
q−1∑
i=1

Iπ,c.c′(k, i)

]
+ Iπ,c.c′(k, q) (6.12)

+

[
q+q′−1∑
i=q+1

Iπ,c.c′(k, i)

]
+ Iπ,c.c′(k, q + q′)

Now, for such k we observe that Iπ,c(k, 0) = I+
π,c(k, 0) from Definition 6.3. Since x0 = z0

and x1 = z1 we obtain that I+
π,c(k, 0) = I+

π,c.c′(k, 0) which is also equal to Iπ,c.c′(k, 0)

following Definition 6.3. By the same way, we prove that Iπ,c.c′(k, q + q′) = Iπ,c′(k, q′).

For i ∈ {1, . . . , q − 1}, we have Iπ,c.c′(k, i) = Iπ,c(k, i) since xi = zi, xi−1 = zi−1 and

xi+1 = zi+1. Similarly, for i ∈ {q + 1, . . . , q + q′ − 1}, we have Iπ,c.c′(k, i) = Iπ,c′(k, i− q)

since xi = zi−q, xi−1 = z(i−q)−1 and xi+1 = z(i−q)+1.

Furthermore, we have Iπ,c.c′(k, q) = I−π,c.c′(k, q) + I+
π,c.c′(k, q). Then, we observe that

Iπ,c(k, q) = I−π,c(k, q) and Iπ,c′(k, 0) = I+
π,c′(k, 0). But, I−π,c(k, q) = I−π,c.c′(k, q) since

xq = zq and xq−1 = zq−1. Similarly, I+
π,c′(k, 0) = I+

π,c.c′(k, q) since x′0 = zq and x′1 = zq+1.

Finally, Iπ,c.c′(k, q) = Iπ,c(k, q) + Iπ,c′(k, 0).
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By replacing the corresponding terms in equation (6.12) we obtain that :

q+q′∑
i=0

Iπ,c.c′(k, i) = Iπ,c′(k, 0) +

[
q−1∑
i=1

Iπ,c(k, i)

]
+ Iπ,c(k, q)

+ Iπ,c′(k, 0) +

[
q′−1∑
i=1

Iπ,c′(k, i)

]
+ Iπ,c′(k, q′)

or,
q+q′∑
i=0

Iπ,c.c′(k, i) =

q∑
i=0

Iπ,c(k, i) +

q′∑
i=0

Iπ,c′(k, i)

Finally, Iπ,c.c′ = Iπ,c + Iπ,c′ . 2

Corollary 6.16 Let π = (yk)k=0,...,p and π′ = (y′k)k=0,...,p′ be two n−paths on a digital

surface Σ such that yp = y′0; let c = (xi)i=0,...,q be an n−path on Σ . If P(π, c), P(π′, c),

P(c, π) and P(c, π′) hold then Iπ.π′,c = Iπ,c + Iπ′,c.

Proof : Since P(c, π) and P(c, π) hold it is immediate that P(c, π.π′) holds. Then,

from Proposition 6.2, we have Iπ.π′,c = Ic,π.π′ . Now, from Proposition 6.15 we obtain

that Ic,π.π′ = Ic,π + Ic,π′ . But, under the hypothesis of this corollary and again from

Proposition 6.2 we have Ic,π = Iπ,c and Ic,π′ = Iπ′,c. 2

6.4 Proof of the main Theorems

The proof of Theorem 9 will be slightly different for the case when (n, n) = (e, v) and

(n, n) = (v, e). However, in both cases, we will first define a relation of deformation

between paths (the which is in fact equivalent to the homotopy relation as stated respec-

tively by Proposition 6.24 and Proposition 6.17 respectively for n = v and n = e.

For n = v, this new deformation is based on the insertion of triplets of surfels, or the

insertion of back and forth in the paths. Then, Proposition 6.18 will state that a triplet

of surfel always have an intersection number equal to zero with any e−path (as soon as

this e−path is closed, otherwise the triplet must not meet an extremity of the e−path).

For n = e, this new deformation is based on the insertion of e−loops of surfels (Defini-

tion 6.10), or the insertion of back and forth in the paths. Then, Proposition 6.25 will

state in a similar way to Proposition 6.18 that an e−loop always have an intersection

number equal to zero with any v−path (a soon as this v−path is closed, otherwise the

e−loop must not meet an extremity of the v−path).
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Finally, using Proposition 6.15, a straightforward proof of Theorem 9 for n = e and n = v

will be given.

Remark 6.6 Note that, without loss of generality, we suppose in this section that any

path mentioned (except closed ones) has the following property : two consecutive surfels

in the path are distinct.

6.4.1 Another definition for the homotopy of v−paths

First, we introduce the notion of an elementary T −deformation and the definition of the

T −deformation relation follows immediately.

Definition 6.7 (back and forth) A simple closed n−path π = (x0, x1, x0) in Σ is called

a back and forth in Σ.

Definition 6.8 (triplet) A simple closed v−path π = (x0, x1, x2, x0) included in a loop

of Σ is called a triplet in Σ.

Definition 6.9 Let X ⊂ Σ, c = (xi)i=0,...,q and c′ = (x′i)i=0,...,q′ be two v−paths in X. The

path c is said to be an elementary T −deformation of c′ in X (and we denote c ∼T c′) if

c = π1.(s).π2 and c′ = π1.γ.π2; or if c = π1.γ.π2 and c′ = π1.(s).π2. Where γ is a back and

forth from s to s in X, or γ is a triplet from s to s in X. We define the T −deformation

relation as the transitive closure of the elementary T −deformation relation.

In other words, the relation of elementary T −deformation links together two v−paths

which are almost the same except that one is obtained by insertion in the other of a

triplet of surfels which belongs to the same loop , or by insertion in the other of a back

and forth. Now, we can state the following proposition :

Proposition 6.17 Let X ⊂ Σ. Two v−paths c and c′ are v−homotopic in X if and only

if they are the same up to a T −deformation.

Proof : First, an elementary T −deformation is a particular case of an elementary

v−deformation where the v−paths γ and γ′ of Definition 2.10 are closed paths, one of

which is reduced to a single surfel and the other one is a triplet or a closed path with

a length of 2 which are both included in a loop, i.e. an elementary deformation cell. It



CHAPTER 6. Intersection number 113

immediately follows that if two v−paths are the same up to a T −deformation then they

are v−homotopic.

Now, it is sufficient to prove that, if two v−paths are the same up to an elementary

v−deformation, then they are the same up to a T −deformation. Let c and c′ be two

v−paths which are the same up to an elementary v−deformation, i.e. c = π1.γ.π2 and

c′ = π1.γ
′.π2 where γ and γ′ are two paths with the same extremities and included in a

common loop.

We first prove that any v−path α = (a0, . . . , ah) with a length l greater than one and

included in a loop is a T −deformation of the path (a0, ah). We proceed by an induction

on the length l. Let αk be a v−path included in a loop L with a length lk. We distinguish

two cases :

• Either αk = (a0, a1), or

• αk is a path with a length lk ≥ 2. Then αk = ω.(a, b, c) where {a, b, c} ⊂ L and

ω may be reduced to (a) if l = 2. Then the path αk is an elementary T −deforma-

tion of the path α′ = ω.(a, b, c).(c, b, a, c).(c). Now, α′ = ω.(a, b).(b, c, b).(b, a, c) is an

elementary T −deformation of the path α′′ = ω.(a, b, a, c) which is itself an elementary

T −deformation of the path αk+1 = ω.(a, c). Finally, αk is an T −deformation of the path

αk+1 = ω.(a, c), which has a length lk+1 = lk − 1.

Finally, either the path αk has a length of one or it is shown that αk is a T −deformation

of a path αk+1 in X with a lower length then αk. By induction with α0 = α , their

must exist k′ > 0 such that αk′ has a length of one (i.e αk′ = (a0, ah)) and which is a

T −deformation of α.

Then, we have just proved that both paths γ and γ′ are equivalent up to a T −deforma-

tion in X to the path reduced to their extremities. It is then immediate that those two

paths are themselves equivalent up to a T −deformation in X. 2

Intersection number of triplets

In this subsection, we will prove the following Proposition which states that a triplet c

(Definition 6.8) has an intersection number equal to zero with any e−path π as soon as

P(π, c) holds.

Proposition 6.18 Let c be a triplet in Σ and let π = (yk)k=0,...,p be an e−path on Σ such
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that P(π, c) holds. Then, Iπ,c = 0.

In order to prove Proposition 6.18, we first state the two following lemmas.

Lemma 6.19 Let c = (x0, x1, x2, x0) be a triplet in Σ. Then, depending on the order of

the parameterization of c, one of the two following properties is satisfied :

• ∀i ∈ {0, 1, 2}, Left c(i) ∩Ne(xi) = ∅.

• ∀i ∈ {0, 1, 2}, Right c(i) ∩Ne(xi) = ∅.

Proof : This lemma comes from local considerations. Indeed, since for all i ∈ {0, 1, 2}
the three surfels xi−1, xi and xi+1 are included in a common loop, then, depending on the

order of the parameterization, exactly one of the intervals between xi−1 and xi+1 of the

canonical parameterization of Nv(xi) cannot contain a surfel e−adjacent to xi. And it is

readily seen that this interval coincides either with Left c(i) for all i ∈ {0, 1, 2} or with

Right c(i) for all i ∈ {0, 1, 2}. 2

Lemma 6.20 Let c = (x0, x1, x2, x0) be a triplet in Σ. Then, one of the two following

properties is satisfied :

• Ic,π = −0.5 for all e−path π with a length 1 which enters c and Ic,π = +0.5 for all

e−path π with a length 1 which exits c.

• Ic,π = +0.5 for all e−path π with a length 1 which enters c and Ic,π = −0.5 for all

e−path π with a length 1 which exits c.

Proof : This lemma is a straightforward consequence of Lemma 6.19 and Definition 6.3.

2

Proof of Proposition 6.18 : Let π = (yk)k=0,...,p and πh = (yh, yh+1) for h ∈ {0, . . . , p−
1} so that π = π0.π1. . . . .πp−1. Since c is closed, then property P(c, π′) holds and since

P(π, c) holds too, from Proposition 6.2 we have Iπ,c = −Ic,π.

Furthermore, since c is closed, the property P(c, π′) holds for any e−path π′ in Σ. Then,

Proposition 6.15 implies :

Ic,π = Ic,π0 + Ic,π1 + . . . + Ic,πq−1
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First, it is immediate that Ic,πh
= 0 for any h ∈ {0, . . . , p − 1} such that πh does not

enter neither exits c. Indeed, Ic,πh
is obviously equal to 0 if c∗ ∩ π∗h = ∅; and since c has

a length of 3 it is also immediate (from the Definition 6.3) that Ic,πh
= 0 when π∗h ⊂ c∗.

Furthermore, since π is either closed or c∗ meets neither y0 nor yp (property P(π, c)), it is

immediate that the number of πh’s which enter c is equal to the number of πh’s which exit

c. Then, from Lemma 6.20, it follows that Ic,π =

p−1∑

h=0

Ic,πh
= 0. Finally, Iπ,c = −Ic,π = 0.

2

Remark 6.7 The intersection number Iπ,c of an e−path π with a triplet c is either equal

to zero or not defined. Indeed, if P(π, c) is not satisfied, then Iπ,c is not defined (see

Figure 6.13).

π

c

y

y

0

5

Figure 6.13: Iπ,c is not defined since y0 ∈ c∗, whereas Ic,π = ±0.5.

Now, we can achieve the proof of Theorem 9 for n = e using Proposition 6.17, Proposi-

tion 6.15 and Proposition 6.18.

6.4.2 Proof of Theorem 9 when (n, n) = (e, v)

Here, we achieve the proof of the main theorem in the case of a v−homotopic deformation

of the v−path c.

Proof of Theorem 9 for (n, n) = (e, v) : From Proposition 6.17 it is sufficient to prove

Theorem 9 in the case when c′ is an elementary T −deformation of c in X. Following

Definition 6.9, we may suppose that c = c1.(s).c2 and c′ = c1.γ.c2. Where γ is a back

and forth or a triplet from s to s in X. Since P(π, c) holds, it is straightforward that

P(π, c1), P(π, γ) and P(π, c2) hold too. Then, from Proposition 6.15, we have Iπ,c =

Iπ,c1 + Iπ,γ + Iπ,c2 .
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If γ is a back and forth in X, i.e γ = (γ0, γ1, γ3) where γ3 = γ0, then it is immediate

from Definition 6.3 that Iπ
π,γ(0) = 0 and Iπ

π,γ(1) = 0 so that Iπ,γ = 0. On the other hand,

if γ is a triplet, then Iπ,γ = 0 from Proposition 6.18.

In both cases, it remains that Iπ,c = Iπ,c1 + Iπ,c2 = Iπ,c1.c2 = Iπ,c′ . 2

6.4.3 Another definition of homotopy for e−paths

Definition 6.10 (e−loop) A parameterization (see Definition 4.7) of a loop containing

a surfel x of Σ and which starts at the surfel x is called an e−loop from x to x in Σ (see

Figure 6.14).

1

3

5

0

x

x

x x

x

x

4

2

Figure 6.14: An e−loop c = (x0, x1, x2, x3, x4, x5, x0) in a digital surface Σ.

First, we introduce the notion of an elementary E−deformation and the definition of the

E−deformation relation follows immediately.

Definition 6.11 Let X ⊂ Σ, c and c′ be two e−paths in X. The path c is said to be

an elementary E−deformation of c′ in X (and we denote c ∼E c′) if c = c1.(s).c2 and

c′ = c1.γ.c2; or if c = c1.γ.c2 and c′ = c1.(s).c2. Where γ is an e−loop or a back and

forth from s to s in X. In this case, we also say that c and c′ are the same up to an

elementary E−deformation. We define the E−deformation relation (denoted by 'E) as

the transitive closure of the elementary E−deformation relation.

In other words, the relation of elementary E−deformation links together two e−paths

which are almost the same except that one is obtained by insertion in the other of a

simple closed e−path included in a loop. Now, we can state the following proposition :

Lemma 6.21 Let c be an e−path in Σ. Then, either c is simple or c = c1.β.c2 where β

is a simple closed path with a length greater then 1.
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Proof : Let c = (x0, . . . , xq). Then, if c is not simple, let h ∈ {0, . . . , q} and l ∈ {0, . . . , q}
be such that xh = xl and l > h; and suppose that l is minimal for these properties. Thus,

c = (x0, . . . , xh).(xh, . . . , xl).(xl, . . . , xq) and (xh, . . . , xl) is simple. 2

Lemma 6.22 Let c = (xi)i=0,...,q be an e−path in X included in a loop L of Σ. Then c

is E−deformation of a simple path from x0 to xq in X.

Proof : We proceed by an induction on the length of a path αk for k ≥ 0 with α0 = c.

Let αk be an e−path in X with a length lk and which is included in L. From Lemma 6.21,

αk is simple or there exists a simple closed path βk with a length greater than 1 such

that αk = αk
1.β

k.αk
2. Since βk is obviously included in L, then βk is an e−loop or a back

and forth in X so that αk is an elementary E−deformation of the path αk+1 = αk
1.α

k
2.

Furthermore, the path αk+1 has a length lk+1 < lk since βk has a length greater than 1.

Since the length lk is necessary greater than or equal to 0, it follows that there exists an

integer l ≥ 0 such that αl is simple. Furthermore, for i = 0, . . . , l− 1, the path αi+1 is an

elementary E−deformation of αi so that αl is an E−deformation of α0 = π. 2

Lemma 6.23 Let c = (xi)i=0,...,q be an e−path in X. The path c.c−1 is an E−deformation

of the trivial path (x0, x0).

Proof : The proof of this lemma is similar to the proof of Lemma 2.4.

2

Proposition 6.24 Let X ⊂ Σ. Two e−paths c and c′ are e−homotopic in X if and only

if they are the same up to an E−deformation.

Proof : First, an elementary E−deformation is a particular case of an elementary

e−deformation where the e−paths γ and γ′ of Definition 2.10 are closed paths, one of

which is reduced to a single surfel and the other one is simple closed e−path included in

a loop, i.e. an elementary deformation cell. It immediately follows that if two e−paths

are the same up to a E−deformation then they are e−homotopic.

Now, it is sufficient to prove that, if two e−paths are the same up to an elementary

e−deformation in X, then they are the same up to a E−deformation in X. Let c and c′

be two e−paths which are the same up to an elementary e−deformation, i.e. c = c1.γ.c2
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and c′ = c1.γ
′.c2 where γ and γ′ are two paths in X with the same extremities and

included in a common loop L.

From Lemma 6.22, the path γ [resp. γ′] is an E−deformation of a simple path β [resp.

β′] included in L. Then, c 'E c1.β.c2 and c′ ' c1.β
′.c2 where β and β′ are simple paths.

If β = β′, then it is immediate that c 'E c′.

Now, if β and β′ are not the same but are both closed, then β and β′ are simple closed

e−paths in L so that c1.β.c2 ∼E c1.c2 and c1.β
′.c2 ∼E c1.c2 (Lemma 6.22). Then, c 'E

(c1.c2) 'E c′.

If β and β′ are not the same and also not closed, let a and b be the two extremities of β

which are distint. Now, from the very definition of a loop, there exists exactly two dictinct

simple e−paths in a loop between two distinct surfels of this loop (see Figure 6.14). Since

β 6= β′ then β∗∩β′∗ = {a, b}. It follows that the path β−1.β′ is a simple closed path from

b to b in L. So c1.β ∼E c1.β.β−1.β′.c2. But from Lemma 6.23, c1.β.β−1.β′.c2 'E c1.β
′.c2

so that c1.β.c2 'E c1.β
′.c2. Finally, c 'E c′. 2

6.4.4 Intersection number of e−loops

Proposition 6.25 Let c be an e−loop in Σ, then Ic,π = 0 for any v−path π on Σ such

that P(π, c) holds.

Lemma 6.26 Let c = (xi)i=0,...,q be an e−loop in Σ. Then, depending on the order of

the parameterization of c, one of the two following properties are satisfied :

• ∀i ∈ {0, . . . , q}, Left c(i) ∩ c∗ = ∅ and Right c(i) ⊂ c∗.

• ∀i ∈ {0, . . . , q}, Right c(i) ∩ c∗ = ∅ and Left c(i) ⊂ c∗.

Proof : This lemma comes from local considerations following the very definition of

the e−loops, the canonical parameterization of the v−neigbhborhood of a surfel, and the

local left and right sets. 2

Lemma 6.27 Let c = (xi)i=0,...,q be an e−loop in Σ. Then, depending on the order of

the parameterization of c, one of the two following properties are satisfied :

• Ic,π = −0.5 for all v−path π with a length 1 which enters c and Ic,π = +0.5 for all

v−path π with a length 1 which exits c.
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• Ic,π = +0.5 for all v−path π with a length 1 which enters c and Ic,π = −0.5 for all

v−path π with a length 1 which exits c.

Proof : This lemma is a straightforward consequence of Lemma 6.26. 2

Proof of Proposition 6.25 : Let π = (yk)k=0,...,p and πh = (yh, yh+1) for h ∈ {0, . . . , p−
1} so that π = π0.π1. . . . .πp−1. Since c is closed, the property P(c, π′) holds for any v−path

π′ in Σ, then Proposition 6.15 implies that :

Ic,π = Ic,π0 + Ic,π1 + . . . + Ic,πp−1

First, it is immediate that Ic,πh
= 0 for any h ∈ {0, . . . , p−1} such that πh does not enter

neither exits c. Indeed, Ic,πh
is obviously equal to 0 when when π∗h ∩ c∗ = ∅; and in the

case when π∗h ⊂ c∗ then from Lemma 6.27 we also obtain that Ic,πh
= 0. Furthermore,

since π is either closed or c∗ does meet neither y0 nor yp (property P(π, c)), it is immediate

that the number of πh’s which enter c is equal to the number of πh’s which exit c. Then,

from Lemma 6.27, it follows that Ic,π =

p−1∑

h=0

Ic,πh
= 0. 2

Remark 6.8 The intersection number Ic,π of an e−loop c with a v−path π may not be

equal to zero if P(π, c) is not satisfied, as depicted in Figure 6.15.

c

π

Figure 6.15: An e−loop c and a v−path π such that Ic,π = ±0.5.

6.4.5 Proof of Theorem 9 when (n, n) = (v, e)

Proof of Theorem 9 for (n, n) = (v, e) : Following Proposition 6.24, it is sufficient

to prove that Iπ,c = Iπ,c′ when c and c′ are two e−paths which are the same up to an

elementary E−deformation in X (in X \ {y0, yp} if π is not closed). Then, let c = c1.γ.c2

and c′ = c1.(s).c2 = c1.c2 where γ is an e−loop or a back and forth from s to s in X (in

X \ {y0, yp} if π is not closed).
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Since P(π, c′) holds, then is is immediate that P(π, c1), P(π, γ) and P(π, c2) hold too.

Then, following Property 6.15, Iπ,c1.γ.c2 = Iπ,c1 + Iπ,γ + Iπ,c2 .

If γ = (y0, y1.y2) where y2 = y0 is a back and forth in X (in X \{y0, yp} if π is not closed),

then it is immediate from Definition 6.3 and Definition 6.4 that Iπ,γ = 0.

If γ is an e−loop, then P(γ, π) holds together with P(π, γ). Then, from Proposition 6.2,

we have Iπ,γ = −Iγ,π and from Proposition 6.25 Iγ,π = 0 . Finally, Iπ,c′ = Xπ,c1 + Iπ,c2

and from Proposition 6.15 it follows that Iπ,c′ = Iπ,c1.c2 = Iπ,c. 2

Conclusion

We have defined the intersection number between a v−path and an e−path lying on

a digital surface, and we have proved that this number of “real” intersections between

two paths of surfels is invariant under homotopic deformations of the two paths. The

intersection number is a new “topological invariant” in the field of digital surfaces. Then,

the intersection number can be used to easily prove a new Jordan theorem for surfels

curves (next Chapter). In Chapter 9 we will use this tool in order to prove an important

theorem related to the characterization of topology preservation within digital surfaces.
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A new Jordan Theorem

Using the intersection number, we easily prove the following new Jordan theorem.

Theorem 11 If π = (yk)k=0,...,p is a parameterization of a simple closed n−curve of

surfels on a digital surface Σ, not included in a loop and n−reducible in Σ (i.e. π 'n

(y0, yp)), then Σ \ π∗ has exactly two n−connected components.

See Figure 6.7 for an illustration of such simple closed n−curves and Figure 6.8 for a

counter example (paths which are not reducible).

In the sequel of this chapter, π = (yk)k=0,...,p is an n−path which satisfies the hypothesis

of Theorem 11. We will use the three following lemmas :

Lemma 7.1 For all k ∈ {0, . . . , p}, the sets Leftπ(k) and Rightπ(k) are both not empty.

Furthermore, yk is n−adjacent to a surfel α of Leftπ(k) and n−adjacent to a surfel β of

Rightπ(k).

Proof : Let us suppose that Leftπ(k) = ∅, then from Definition 6.2, yk−1 and yk+1 are

e−adjacent. Then, yk+1 is e−adjacent (and so v−adjacent) to both yk and yk−1. Since

π has a length greater than 3 (otherwise π∗ would be included in a loop) it follows that

there exists a surfel yj /∈ {yk−1, yk, yk+1} which is n−adjacent to yy+1; and this contradict

the fact that π∗ is a simple closed n−curve. Then, Leftπ(k) 6= ∅ and similarly we can

prove that Rightπ(k) 6= ∅.
If n = e it is immediate that Rightπ(k) [resp. Leftπ(k)] contain a surfel α [resp. β] which

is v−adjacent to yk.
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If n = v then we may suppose that no surfel of Leftπ(k) [resp. Rightπ(k)] is e−adjacent

to yk. Then, this implies that yk+1 and yk−1 belong to the same loop so that c∗ is not a

simple closed v−curve. 2

Lemma 7.2 There exists two surfels α and β in Σ \π∗ which are n−adjacent to a surfel

yk of π and which are not n−connected in Σ \ π∗.

Proof : Let α and β be the two surfels defined in Lemma 7.1. Now, we suppose by

contraposition the existence of a n−path c = (xi)i=0,...,q in Σ \ π∗ between the surfels

α and β, n−neighbors of the surfel yk, and which does not intersect π∗. We denote

c′ = (x0 = α, . . . , xq = β, yk, α) which is a closed n−path. Then, from the definition of

the two surfels α and β; and from the very definition of the intersection number between

π and c′, we have Iπ,c′ = ±1. Now, since π is n−homotopic to a trivial path and from

Theorem 9, and also Remark 6.5, we should have Iπ,c′ = 0. This contradicts the existence

of c (see Figure 7.1 and Figure 7.2). Then, α and β are not n−connected in Σ \ π∗. 2

Lemma 7.3 Let yk and yk+1 be two consecutive surfels of π for k ∈ {0, . . . , p}. For any

surfel s /∈ π∗, which is n−adjacent to yk, there exists a surfel t /∈ π∗, n−adjacent to yk+1,

and a n−path from s to t in Σ \ π∗.

Proof :

Case when (n, n) = (e, v) : Then, the lemma can be proved by local considerations.

We can suppose that yk+1 shares as an edge with yk the oriented edge (0, 1) of yk. Then

we consider the following cases :

• yk−1 shares as an edge with yk the oriented edge (1, 2) of yk. Then, we call a

the surfel wich shares with yk its oriented edge (2, 3) and b the surfel which share

its oriented edge (3, 0). Neither a nor b can belong to π∗ (otherwise, π is not an

e−curve). Now, for any surfel s of Nv(yk) \ π∗ we have :

– s ∈ L1(yk) so s is v−adjacent to yk+1 ∈ L0(yk).

– s ∈ L2(yk) so s is v−adjacent (or equal) to a which is also v−adjacent to b,

itself v−adjacent to yk+1.

– s ∈ L3(yk) so s is v−adjacent or equal to b itself v−adjacent to yk+1.
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– s ∈ L0(yk) so s is v−adjacent or equal to yk+1.

• yk−1 shares as an edge with yk the oriented edge (2, 3) of yk. Then, we call a the

surfel wich shares with yk the oriented edge (1, 2) of yk and b the surfel which shares

with yk the oriented edge (3, 0) of yk. Neither a nor b can belong to π∗. Now, for

any surfel s of Nv(yk) \ π∗ we have :

– s ∈ L0(yk) or s ∈ L1(yk) so s is v−adjacent or equal to yk+1.

– s ∈ L2(yk) so s is v−adjacent (or equal) to a itself v−adjacent to yk+1.

– s ∈ L3(yk) so s is v−adjacent or equal to b itself v−adjacent to yk+1.

• yk−1 shares with yk the oriented edge (3, 0) of yk. This case is similar with the first

one.

In all cases, we are able to construct a v−path in Σ \ π∗ from s to a surfel t which is

v−adjacent to yk+1.

Case when (n, n) = (v, e) : Since π is a simple closed v−curve, then we have Nv(yk) \
{yk−1, yk+1} = Nv(yk) \ π∗. Furthermore, the set Nv(yk) \ {yk−1, yk+1} has exactly two

eyk
−connected components which both contain a surfel e−adjacent to yk (Remark 6.3).

Obviously, yk+1 is e−adjacent to each of the previous eyk
−connected components of π∗.

Then, any surfel s in one of these connected components is e−connected in Σ \ π∗ to a

surfel t which is e−adjacent to yk+1 (see Figure 7.3). 2

Proof of Theorem 11 : Let yk be a surfel of π for k ∈ {0, . . . , p}. From Lemma 7.2

there exists two surfels α and β in π∗ which are n−adjacent to the surfel yk and not

n−connected in Σ \ π∗. In particular, Σ \ π∗ has at least two n−connected components.

Furthermore, for any surfel x ∈ Σ \ π∗, since Σ is e−connected (Theorem 6), then there

exists an n−path c′ in Σ \ π∗ from x to another surfel x′ which is n−adjacent to a surfel

yh of π∗ (h ∈ {0, . . . , p}).
Using inductively Lemma 7.3, we see that the surfel x′ is n−connected in π∗ with a surfel

x′′ of Nn(yk) \ {yk−1, yk+1}.
If n = v and since Leftπ(k) and Rightπ(k) cannot contain other surfels of π than yk−1

and yk+1 so that Leftπ(k)∪Rightπ(k) = Nv(yk) \ {yk−1, yk+1}, then x′′ is e−connected to

either α or β in π∗.
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If n = e, then no surfel of π other than yk−1 and yk+1 are e−adjacent to yk. It follows

immediately that Nv(yk) \ π∗ has exactly two vyk
−connected components respectively

included in Leftπ(k) and Rightπ(k). Then, x′′ is vyk
−connected to either α or β in π∗.

Finally, in both cases, it remains that x is n−connected to either α or β in Σ \ π∗,

surfels which are not themselves n−connected in this set. Then, Σ \ π∗ has exactly two

n−connected components. 2

: c

: x, x′

Figure 7.1: The two surfels x and x′ may

be linked by an e−path in c∗. Then, c

cannot be v−reducible in Σ.

: c′

: x, x′

Figure 7.2: Since c′ is v−reducible in

Σ, the two surfels x and x′ cannot be

e−connected in c∗ (Lemma 7.2).

: c

: V

Figure 7.3: Any surfel of the set V (set of surfels of Σ which are e−adjacent to c∗) is

either e−connected in Σ \ c∗ to the surfel x or to the surfel x′ of Figure 7.1.



Chapter 8

New properties of the 2D winding

number

In this chapter we present a new property of the two dimensional winding number (as

defined in Section 2.1.2) which may be deduced from the main property of the intersection

number. Indeed, it is stated here that the winding number of a digital closed path c in

Z2 around a pixel x /∈ c∗ is the same for any closed path c′ which is n−homotopic to c in

Z2 \{x}, for n ∈ {4, 8} (such a property was previously admitted without proof). Indeed,

we will define a generalized two dimensional winding number, using the intersection

number, so that properties of this new number comes from the main properties of the

intersection number. For example, using this new definition, we will also be able to give a

straightforward proof of the fact that the winding numbers Wx,c and Wx′,c, of an n−path

c respectively around x and around x′, are equal as soon as the two pixels x and x′ belong

to the same n−connected component of c∗. However, we are not interested here by the

data of an efficient algorithm which would allow to compute this generalized 2D winding

number. Thus, we will only investigate some new properties which are straightforward

consequences of the new definition.

Furthermore, the definition of the generalized winding number provides a new definition of

the winding number which may be computed using any half n−path (Definition 8.6) from

a pixel x instead of an half straight line from the pixel x considered in the complement

of a closed n−path c.

First, let us introduce a possible one to one correspondence between any bounded image

in Z2 and the same image in a surface Σ. We will use the following definitions.
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Definition 8.1 (l×h−rectangle) Let (l, h) ∈ Z2. A subset R of Z2 is called an l×
h−rectangle if there exists (x, y) ∈ Z2 such that : R = { (x + i, y + j)| 1 ≤ i ≤ l and

1 ≤ j ≤ h } (see Figure 8.1(a)). An l×h−rectangle may also be simply called a rectangle.

Definition 8.2 (l×h−box) Let R be an l×h−rectangle. We define the l×h−box B
of Z3 associated to R by : B = { (x, y, 0) ∈ Z3| (x, y) ∈ R} (see Figure 8.1(b)). An

l×h−box may also be simply called a box.

Definition 8.3 (l×h−surface) Let R be an l×h−rectangle and B be the l×h−box

associated to R. We define the l×h−surface SigmaR associated toR by : ΣR = δ6+(B, B)

(see Figure 8.1(b)). An l×h−surface may also be simply called a rectangle.

Finally, we may define the upper part of an l×h−surface :

Definition 8.4 (upper part of an l×h−surface) Let R be an l×h−rectangle and B

be the l×h−box associated to R. Furthermore, let ΣR be the l×h−surface associated to

R. We define the upper part of ΣR and we denote by Up(ΣR) the set of surfels of ΣR of

the form ((x, y, 0), (x, y, 1)) (for all (x, y) ∈ R). (see Figure 8.1(c)).

(a) In grey : a 9×
8−rectangle in Z2.

(b) The visible 9×8−surface of a

9×8−box.

(c) In grey : the upper part of a

9×8−surface

Figure 8.1: Illustration of the Definition 8.1-8.4

In the sequel of this chapter, and when no more precision is given, we have (n, n,m, m) ∈
{(4, 8, e, v), (8, 4, v, e)}. Furthermore, R is an l×r−rectangle of Z2 and ΣR is the l×
r−surface associated to R. We will also denote by Z the upper part of ΣR (i.e. Z =

Up(ΣR)).

Now, we may define the following map.
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Definition 8.5 (map C) We define the one to one correspondance C between R and Z

by :

C : R −→ Z

(x, y) 7−→ ((x, y, 0), (x, y, 1))

The following remark comes immediately :

Remark 8.1 For any pixel x and y of the rectangle R :

• R4(x, y) if and only if Re(C(x), C(y)).

• R8(x, y) if and only if Rv(C(x), C(y)).

Notation 8.1 For any n−path π = (yk)k=0,...,p such that π∗ ⊂ R, we denote by C(π)

the m−path π′ of Z defined by π′ = (C(y0), . . . , C(yp)) (this is an m−path following

Remark 8.1).

We will also use the following notion of a half path (see Figure 8.2).

Definition 8.6 (set of half n−paths) An n−path π = (yk)k=0,...,p with p > 0 is called

a half n−path of Z2 from y0 according to R if the two following properties hold :

i) y0 ∈ R.

ii) There exists an integer N (also denoted by N∞(π)) such that {y0, . . . , yN} ⊂ R and

for all k > N we have yk /∈ R.

We denote by Hx
n(R) the set of half n−paths of Z2 from the pixel x according to R, and

by Hn(R) the union of the sets Hx
n(R) for all x ∈ R.

Let x0 be a surfel of Z. Now, let z be a surfel of Z which is e−adjacent to Z. One

may associate to z exactly one of its (at most two) e−neighbors, denoted by t(z), in

Z. Furthermore, one may also associate to the surfel t(z) an arbitrary e−path in Z

from t(z) to x0 (see Figure 8.3(a)). Finally, we have just “defined” a map G from the

border of R to the set of e−paths in Z which start at some surfel t(z) e−adjacent to

a surfel z ∈ Z and end at x0. Then, we can define the map C̃ which associates to an

half n−path π = (y0, . . . , yp) of Hy0
n (R) (see Figure 8.3(b)) the path π′ in Σ defined by :

π′ = (y0, . . . , yN , t(yN)).G(yN) where N = N∞(π) (see Figure 8.3(c)).
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c R

(a) An half 8−path c according

to a rectangle R

c′ R
(b) This is not an half path.

Figure 8.2: Example and counter-example of half paths according to a rectangle R .

G(z)
x
0

z

t(z)

(a) The path G(z).

R c

(b) An 8−path c in Z2 which exits

from a rectangle R.

(c) The path C̃(c).

Figure 8.3: Illustration of the construction of a map C̃ which associates an n−path in R
with an m−path in ΣR.
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The following proposition comes with no need of a proof; indeed, it is simply a straightfor-

ward consequence of the definition of the two dimensional winding number (Section 2.1.2)

and the definition of the intersection number (Section 6.1).

Proposition 8.1 Let c be a closed n−path in R and x be a pixel of R\ c∗. Furthermore,

let π′ = C̃(∆α
x) for α ∈ {1, 2, 3, 4}, then W α

x,c = Iπ′,C(c) (see Section 2.1.1 for the definition

of the half straight lines ∆α
x).

The following remark comes from Proposition 2.5 and the fact that ΣR is obviously simply

n−connected for n ∈ {e, v} (the reader who needs a proof can prove it from χn(ΣR) = 2

and the definition of a disk).

Remark 8.2 Let c be a closed n−path in R and x be a pixel of R \ c∗. If π1 and π2 are

two half n−paths of Hx
n(R), then C̃(π1) and C̃(π2) are m−homotopic.

Now, we also state the following proposition which will allow to justify Definition 8.7.

Proposition 8.2 Let c be a closed n−path in R and x be a pixel of R\ c∗. If π1 and π2

are two half n−paths of Hx
n(R) then IeC(π1),C(c) = IeC(π2),C(c).

Proof : From Remark 8.2, we have C̃(π1) 'm C̃(π2) in Σ. Now, the properties

P(C̃(π1), C(c)), P(C̃(π2), C(c)), P(C(c), C̃(π1)) and P(C(c), C̃(π2)) obviously hold so that

from Theorem 10 we have IeC(π1),C(c) = IeC(π2),C(c) (see Figure 8.4). 2

{C(x), C(x0)} C(c) C̃(π1)

(a) IeC(π1),C(c) = ±1

{C(x), C(x0)} C(c) C̃(π2)

(b) IeC(π2),C(c) = ±1

Figure 8.4: Illustration of Proposition 8.2

We observe that an half straight line ∆α
x from x (see Section 2.1.1) belongs to Hn

x(R)

for n ∈ {4, 8} as depicted by Figure 8.5(a). It follows immediately that the following

definition of a new two dimensional winding number coincides with the definition of

Section 2.1.2 in the particular case when π is an half straight line (see Figure 8.5).
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Definition 8.7 (generalized 2D winding number) Let c be a closed n−path in Z2

such that c∗ ⊂ R. We define the generalized winding number of c around x, denoted by

Ωx,c, as follows : Ωx,c = IeC(π),C(c) where π is any n−path of Hx
n.

The generalized two dimensional winding number is well defined since it effectively does

not depend on the choice of the half n−path π following Proposition 8.2. This allows to

state the following theorem which is a restriction of the Theorem 9 in the context of 2D

images (see Figure 8.6).

x ∆1
x

(a) A 15× 17−rectangle R, a pixel x and an

8−path c included in R\ {x}. The half line ∆1
x

is an half 4−path according to R. W 1
x,c = 1.

(b) c′ = C(c) and π′ = C̃(∆1
x).

Iπ′,c′ = 1.

Figure 8.5: The classical 2d winding number and the generalized one.

Now, we can state the following theorem.

Theorem 12 Let x ∈ Z2 and let c and c′ be two closed n−paths which are n−homotopic

in R \ {x}. Then, Wx,c = Wx,c′.

Proof : From Definition 8.7 we have Wx,c = IeC(∆1
x),C(c) and Wx,c′ = IeC(∆1

x),C(c′). From

the very definition of the map C, is is immediate that C(c) 'm C(c′) in Z{C(x)}. Then,

since P(C̃(∆1
x), C(c)) and P(C̃(∆1

x), C(c′)) obviously hold it comes from Theorem 9 that

IeC(∆1
x),C(c) = IeC(∆1

x),C(c′). 2

Observe that the latter theorem may be easily generalized to any homotopic deformation

of the paths in Z2 \ {x} instead of R \ {x}.
The following proposition was proved by R. Malgouyres in [58] using a less immediate

proof because of the restriction imposed by the use of an half straight line in the definition

of Wx,c. Now, this proposition is a straightforward consequence of the definition of Ωx,c.
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x ∆1
x

c

(a)

x ∆1
x

c’

(b)

Figure 8.6: The 2d winding number Wx,c is left unchanged by any 8−homotopic defor-

mation of c in Z2 \ {x}.

Proposition 8.3 ([58]) Let x be a pixel of Z2 and c be a closed n−path in Z2 \ {x}. If

x′ is pixel of c∗ which is n−connected to x in c∗ then Ωx,c = Ωx′,c.

Sketch of proof (different from [58]) : Let R be a rectangle of Z2 such that

c∗ ∪ {x, x′} ⊂ R and also such that x and x′ are n−connected in R \ c∗. We have

Ωx,c = IeC(π),C(c) where π is an half n−path from x related to R. Then, let γ be an

n−path from x′ to x in R\c∗. Since x /∈ c∗ and γ∗∩c∗ = ∅, then it is immediate from the

definition of the intersection number that IeC(π),C(c) = IeC(γ.π),C(c). Now, the n−path γ.π is

an half n−path from x′ according to R so that IeC(γ.π),C(c) = Ωx′,c. Finally, Ωx′,c = Ωx,c.

2

In Figure 8.7(a) we have depicted a closed 4−path c in a rectangle R and an half 8−path

π from a pixel x (dark pixel with a cross) which allows to compute the generalized winding

number of c around x. Following Definition 8.7, we use the corresponding paths depicted

in Figure 8.7(b). Then the two following properties hold :

– The two dark pixels x and x′ are 8−connected in R by a 8−path γ which does not

intersect c.

– The two dark surfels C̃(x) and C̃(x′) are v−connected in Up(ΣR) by a v−path C̃(γ)

which does not intersect C̃(c).

Then, the path γ.π is an half 8−path from x′ according to R and it is obvious that

IeC(γ.π),eC(c) = IeC(π),eC(c).
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{x, x′} c π∗ ∩R
(a)

{C(x), C(x′)} C(c) C̃(π)

(b)

Figure 8.7: The generalized winding number of the closed 8−path c (figure (a)) is the

same around each dark pixels.



Chapter 9

New characterization of topology

preservation

9.1 A new theorem about homotopy in digital sur-

faces

In Chapter 5 we have given the definition of homotopy between subsets of a digital surface

Σ. In this section, we are interested by the characterization of homotopy which involves

the digital fundamental group (see Sections 2.3 and 5.3). Then, using the intersection

number as defined in Chapter 6, we state and prove a new characterization of topology

preservation.

The purpose of this section is to prove that the condition “i∗ is an isomorphism” of

Theorem 8 is sufficient to say that each n−connected component of Y contains a surfel of

X, except in the very particular case when X is the whole surface Σ which is a topological

sphere (see Definition 5.9) and Y is a disk obtained by removing from X a topological

disk (Definition 5.8). In other words, except in the above mentioned particular case,

condition 2 of Theorem 8 is in fact implied by condition 1 of Theorem 8.

In other words, we prove the following theorem:

Theorem 13 Let Y ⊂ X ⊂ Σ be two n−connected sets such that X 6= Σ or Σ is not a

sphere or X \ Y is not a topological disk, or Y is not a topological disk, then:

Y is lower n−homotopic to X if and only if the morphism i∗ : Πn
1 (Y, B) −→ Πn

1 (X, B)

induced by the inclusion map i : Y −→ X is an isomorphism for any base surfel B ∈ Y .
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To prove this theorem, we suppose that some (X, Y ) satisfies the condition 1 of Theorem 8,

but does not satisfies condition 2 of Theorem 8. In other words, we suppose that i∗ is

an isomorphism for any base surfel B ∈ Y and we also suppose the existence of an

n−connected component of Y which contains no point of X. Namely, we suppose the

existence of an n−connected component of Y , denoted by A, such that A ⊂ X. In a first

step, we prove that this n−connected component A is a topological disk. In a second

step, we will show by an indirect way that the set X \A is a topological disk too, in fact

equal to Y , and conclude that X = Σ and X is a sphere.

In the sequel of this section, Y ⊂ X are two n−connected subsets of a digital surface Σ,

and we suppose that for any surfel B ∈ Y , the group morphism i∗ between Πn
1 (Y,B) and

Πn
1 (X,B) induced by the inclusion map of Y in X, is an isomorphism, as in Theorem 8.

In further proof, we will use the following simple Lemma.

Lemma 9.1 Let Y ⊂ X be two n−connected subsets of Σ and B be a surfel of Y . Then,

the two following properties are equivalent :

i) The morphism i∗ : Πn
1 (Y, B) −→ Πn

1 (X, B) induced by the inclusion of Y in X is

an isomorphism.

ii) For all surfels B′ in Y , the morphism i′∗ : Πn
1 (Y, B′) −→ Πn

1 (X,B′) induced by the

inclusion of Y in X is an isomorphism.

Proof : We only have to prove that property i) implies property ii). Suppose that

i∗ : Πn
1 (Y, B) −→ Πn

1 (X, B) is group isomorphism and let B′ be any surfel of Y . Then,

let i′∗ be the group morphism from Πn
1 (Y, B′) to Πn

1 (X,B′) induced by the inclusion of

Y in X. Now, following Proposition 2.10, let iY and iX be the two canonical group

isomorphisms respectively from Πn
1 (Y,B) to Πn

1 (Y,B′) and from Πn
1 (X,B) to Πn

1 (X,B′).

Clearly, we have i′∗ = iX ◦ i∗ ◦ i−1
Y so that i′∗ is an isomorphism. 2

9.2 First step of the proof

In this section, A is a connected component of Y which contains no surfel of X (i.e.

A ⊂ X) and B is a surfel of Y (B is the base surfel of the digital fundamental groups

which are considered in this section).
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Lemma 9.2 There exists a surfel x0 ∈ A such that the morphism :

i′′∗ : Πn
1 (Y ∪ (A \ {x0}), B) −→ Πn

1 (X, B)

induced by the inclusion map i′′ : Y ∪ (A \ {x0}) −→ X is an isomorphism and Y is

lower n−homotopic to Y ∪ (A \ {x0}).

Corollary 9.3 The set {x0} is n−homotopic to A, so that A is a topological disk for the

n−adjacency relation.

Before to prove Lemma 9.2, we have to prove two preliminary results.

Lemma 9.4 Let x0 be a surfel of A. If A is composed of at least 2 surfels, then there

exists a surfel x 6= x0 in A which is n−adjacent to Y and which is n−simple for Y ∪{x}.

Corollary 9.5 Let x0 be a surfel of A. If A is composed of at least 2 surfels, then there

exists a surfel x 6= x0 in A which is n−adjacent to Y and which is n−simple for A.

Proof : From Lemma 9.4, there exists a surfel x 6= x0 in A which is n−adjacent to Y and

n−simple for Y ∪{x}. Then, x is neither n−isolated in Y ∪{x} nor n−interior to Y ∪{x}
(since A ⊂ Y is n−connected and x 6= x0). Then, following Remark 5.1 and since x is

n−simple for Y ∪{x} we have Card(Cx
n[Gn(x, Y ∪{x})]) = Card(Cx

n[Gn(x, Y ∪ {x})]) = 1.

Now, since x ∈ A cannot be n−adjacent to any other n−connected component of Y than

A, it follows that Cx
n[Gn(x, Y ∪ {x})] = Cx

n[Gn(x,A)]. Now, since x is n−adjacent to Y it

is not n−interior to A then x is n−simple for A. 2

Proof of Lemma 9.4 : Let x be a surfel of A ⊂ Y which is n−adjacent to Y and

whose distance to x0 is maximal among all surfels of A which are n−adjacent to Y . The

distance used here is the length of a shortest n−path in A between two surfels. Let us

prove that the surfel x is n−simple for Y ∪{x}. We have Gn(x, Y ∪{x}) = Gn(x, Y ) and

Gn(x, Y \{x}) = Gn(x, Y ). Suppose that this surfel x is not n−simple for Y ∪{x}. Since

x is neither n−isolated nor n−interior to Y ∪{x}, this implies that Card(Cx
n(Gn(x, Y ))) =

Card(Cx
n(Gn(x, Y ))) ≥ 2 (Remark 5.1). Let a and b be two surfels n−adjacent to x in

two distinct nx−connected components of Gn(x, Y ) which are n−adjacent to x.

Let us denote by π0 the n−path (b, x, a). Since a and b are n−adjacent to x and do not

belong to the same nx−connected component of Nv(x) ∩ Y , a is not nx−adjacent to b.

Following Remark 6.3 it follows that none of the sets Leftπ0
(1) and Rightπ0

(1) is empty

and each one contains a surfel which is n−adjacent to x. Furthermore, if we suppose
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that all the surfels of Leftπ0
(1) or Rightπ0

(1) which are n−adjacent to x belong to Y , it is

immediate that the two surfels a and b are nx−connected in Nv(x)∩Y . Then, there must

exists two surfels s1 and s2 which are n−adjacent to x such that s1 ∈ Rightπ0
(1)∩A and

s2 ∈ Leftπ0
(1)∩A. Moreover, we may assume that s1 and s2 are n−adjacent to Y . Since

the set Y is n−connected, there exists an n−path β1 from a to B in Y and an n−path

β2 from B to b in Y .

Now, an n−path α1 = (s1, . . . , x0) in A\{x} from s1 to the surfel x0 must exist since the

n−distance between x and x0 is maximal among all surfels of A which are n−adjacent to

Y . Indeed, otherwise, let c be a shortest n−path with a length l between x and x0 in A.

If s1 is not n−connected to x0 in A \ {x} and since s1 is n−adjacent to x, then s1 is at a

distance of l + 1 from x0 in A. This contradicts the fact that x is at a maximal distance

l from x0 among all the surfels of A which are n−adjacent to Y . Similarly, there must

exist an n−path α2 = (s2, . . . , x0) from s2 to x0 in A \ {x}.
Let α be the closed n−path α = (x).α1.α

−1
2 .(x) in A. Note that, from the very construc-

tion of α1 and α2, we have x /∈ α∗1 and x /∈ α∗2. We can also construct a closed n−path

β = (B).β2.π0.β1.(B) from B to B in Y ∪{x} with π0 = (b, x, a) and x /∈ β∗1 ∪β∗2 since β1

and β2 are n−paths in Y . We deduce that the two paths α and β only cross each other

one time in x, and since s1 ∈ Rightπ0
(1) and s2 ∈ Leftπ0

(1), we have Iα,β = −Iβ,α = 1.

Now, since the morphism i∗ from Πn
1 (Y, B) to Πn

1 (X,B) induced by the inclusion of Y

in X is an isomorphism. In particular, i∗ is onto and then, for any equivalence class

[c′]Πn
1 (X,B), there exists a closed n−path c ∈ AB

n (Y ) which is n−homotopic to c′ in X so

that i∗([c]Πn
1 (Y,B)) = [c′]Πn

1 (X,B). In our case, there exists an n−path γ ∈ AB
n (Y ) which is

n−homotopic to the n−path β in X and i∗([γ]Πn
1 (Y,B)) = [β]Πn

1 (X,B). If γ is n−homotopic

to β in X, and from Theorem 9, we deduce that Iα,β = Iα,γ = 1. But since α is an

n−path in A ⊂ Y and γ is an n−path in Y , we have γ∗ ∩ α∗ = ∅ and then Iα,γ = 0 and

we obtain a contradiction. Finally, the point x must be n−simple for Y ∪ {x}. 2

Remark 9.1 If x is an n−simple surfel for Y ∪{x}, then, since x is n−simple in A the

set A \ {x} is n−connected.

Proof of Lemma 9.2 : By induction of Lemma 9.4 (and using Lemma 5.1) we

show that there exists a sequence of surfels (s0, . . . , sl) such that for all i ∈ {0, . . . , l},
si ∈ A is n−simple for Y ∪ {s0, . . . , si} and A \ {s0, . . . , sl} = {x0}. Therefore, Y
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is lower n−homotopic to Y ∪ (A \ {x0}). From Lemma 5.1, the morphism ii∗ : Πn
1 (Y ∪

{s0, . . . , si−1}, B) −→ Πn
1 (Y ∪{s0, . . . , si}, B) induced by the inclusion of Y ∪{s0, . . . , si−1}

in Y ∪ {s0, . . . , si} is a group isomorphism. On the other hand, the morphism i′∗ :

Πn
1 (Y,B) −→ Πn

1 (Y ∪ {si|i = 0, . . . , l} = Y ∪ (A \ {x0}), B) induced by the inclusion

map i′ : Y −→ Y ∪ (A \ {x0}) is such that i′∗ = il∗ ◦ . . . ◦ i0. Therefore, the morphism

i′∗ is an isomorphism. Furthermore, since i∗ is an isomorphism, then i′′∗ = i∗ ◦ i′∗
−1 is an

isomorphism from Πn
1 (Y ∪ (A \ {x0}), B) to Πn

1 (X, B). 2

9.3 Second step of the proof

In Section 9.2 we have proved that Y is lower n−homotopic to Y ∪ (A\{x0}) where x0 is

an isolated surfel of Y ∪ (A \ {x0}). In this section, we will state that, under the condition

that the n−path surrounding {x0} in Y ∪ (A \ {x0}) is n−reducible in Y ∪ (A \ {x0}),
then Y ∪ (A \ {x0}) is a topological disk.

9.3.1 Edgel borders of a connected subset X ⊂ Σ

First, we have to define explicitly what we call a “border” of a connected set of surfels.

Let X be an n−connected subset of a surface Σ.

Definition 9.1 (border edgel) We call a border edgel of X any couple (x, y) of surfels

of Σ such that x ∈ X and y ∈ X. We denote by B(X) the set of border edgels of X.

Definition 9.2 (s−adjacency relation) We say that two border edgels (x, y) and

(x′, y′) of B(X) are s−adjacent if the three following conditions are satisfied :

• x, y, x′ and y′ belong to a common loop L of Σ.

• x 6= x′ or y 6= y′.

• x is e−connected to x′ in L ∩X if n = e, and y is e−connected to y′ in L ∩X if

n = v.

We can define the s−connectivity between border edgels as the transitive closure of this

adjacency relation. The definition of an s−path of border edgels also comes immediately.

Note that any s−connected component of border edgels of X is a simple closed curve (i.e.
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each border edgel has exactly two s−neighbors, one per loop which contains this border

edgel) and is called a border of X, whereas a parameterization of such a simple closed

curve is called a parameterized border of X.

Definition 9.3 (n−path cn(s)) Let s = (s0 = (x0, y0), . . . , sl = (xl, yl)) be a s−path of

border edgels of X. We define the n−path associated with s denoted by cn(s) according

to the following cases :

• If n = e and for i ∈ {0, . . . , l − 1}, we call ci the shortest e−path joining xi to

xi+1 in X ∩L, where L is the unique loop containing {xi, xi+1, yi, yi+1} (path which

exists according to the definition of the s−adjacency between si and si+1). Then

ce(s) = c0 ∗ . . . ∗ cl−1.

• If n = v and for i ∈ {0, . . . , l − 1}, then xi is v−adjacent to xi+1. We define

cv(s) = (x0, . . . , xl).

Remark 9.2 For any s−path of border edgels s = (s0 = (x0, y0), . . . , sl = (xl, yl)) of

X ⊂ Σ and n ∈ {e, v}, all the surfels of cn(s) are n−adjacent to X.

9.3.2 Free group

In the following, we will use the notion of the (non-Abelian) free group with m generators.

Let A = {a1, . . . , am} ∪ {a−1
1 , . . . , a−1

m } be an alphabet with 2m distinct letters, and let

Wm be the set of all words over this alphabet (i.e. finite sequences of letters of the

alphabet). We say that two words w ∈ Wm and w′ ∈ Wm are the same up to an

elementary cancellation if one can be obtained by inserting or deleting in the other a

sequence of the form a−1
i ai or a sequence of the form aia

−1
i with i ∈ {1, . . . , m}. Now,

two words w ∈ Wm and w′ ∈ Wm are said to be free equivalent if there is a finite sequence

w = w1, . . . , wk = w′ of words of Wm such that for i = 2, . . . , k the words wi−1 and wi

are the same up to an elementary cancellation. This defines an equivalence relation on

Wm and we denote by Fm the set of equivalence classes of this equivalence relation.

Furthermore, if w is a word of Wm, we denote by w the equivalence class of the word w

following the latter equivalence relation. The concatenation of words defines an operation

on Fm which provides Fm with a group structure (we define w1w2 = w1w2). The group

thus defined is called the free group with m generators over A. Classically, we denote by

w1.w2 the word obtained by concatenation of the words w1 and w2.



CHAPTER 9. New characterization of topology preservation 139

We denote by 1m the unit element of Fm which is equal to ε where ε is the empty word.

The only result which we shall admit on the free group is the classical result that if a

word w ∈ Lm is such that w = 1m and w is not the empty word, then there exists

in w two successive letters aia
−1
i or a−1

i ai with i ∈ {1, . . . , m}. This remark leads to an

immediate algorithm to decide whether a word w ∈ Wm is such that w = 1m by successive

cancellations.

9.3.3 Free group element associated with a path

In the sequel X = {x1, . . . , xl} is an n−connected subset of Σ with cardinality l > 1.

Notation 9.1 If x is a surfel of X, we abbreviate and denote by o(x) the cardinality of

Cx
n[Gn(x,X)], set of nx−connected components of Nv(x)∩X which are n−adjacent to x.

We observe that o(xi) may be at most equal to 4 . Then, we may assign a number t in

{1, . . . , o(xi)} to each element of Cxi
n [Gn(xi, X)] so that it makes sense to talk of the tth

element of Cxi
n [Gn(xi, X)].

Definition 9.4 (alphabet AX) Now, we define the alphabet AX as follows :

AX = {x1,1, . . . , x1,o(x1), x2,1, . . . , x2,o(x2), . . . . . . , xl,1, . . . , xl,o(xl)}
∪ {x−1

1,1, . . . , x
−1
1,o(x1), x

−1
2,1, . . . , x

−1
2,o(x2), . . . . . . , x

−1
l,1 , . . . , x−1

l,o(xl)
}

Where the symbols {xi,1, . . . , xi,o(i)} are associated to the surfel xi, and the symbol xi,j is

associated to the jth element of Cxi
n [Gn(xi, X)].

Definition 9.5 (word associated to a path) If π = (y0, y1) is an n−path in X with

a length 1 such that y0 = xa and y1 = xb for {a, b} ⊂ {0, . . . , l}. We associate to π a

word wn(π, X) of the alphabet AX defined by wn(π, X) = xa,tx
−1
b,u where t and u are such

that xb belongs to the t
th

element of Cxa
n [Gn(xa, X)] and xa belongs to the u

th
element of

Cxb
n [Gn(xb, X)].

If π = (yk)k=0,...,p is an n−path with a length q > 1 in X, we define the word wn(π,X)

as follows :

wn(c,X) = wn((y0, y1), X)wn((y1, y2), X)wn((y2, y3), X) . . . wn((yp−1, yp), X)

And we define wn(π, X) to be the empty word if π is of length 0 or is a trivial path.
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Definition 9.6 (free group element associated to a path) If π is an n−path in X

and AX has a cardinality of 2m. We define the element νn(π, X) of the free group with

m generators over AX by : νn(π, X) = wn(π,X).

Remark 9.3 If π1 and π2 are two n−paths in X such that the last surfel of π1 is equal

to the first surfel of π2. Then, wn(π1.π2, X) = wn(π1, X)wn(π2, X)

Remark 9.4 If π is an n−path in X, then, from its very construction, wn(π, X) cannot

contain some pair xi,tx
−1
i,t for i ∈ {0, . . . , l} and t ∈ {1, . . . , o(xi)}.

Proposition 9.6 Let X be an n−connected subset of Σ with at least two surfels. Let π

and π′ be two n−paths in X. If π 'n π′ then ν(π, X) = ν(π′, X).

The proof of Proposition 9.6 relies on the three following lemmas.

Lemma 9.7 If π is an n−back an forth in X, then νn(π,X) = 12m.

Proof : Let π = (y0, y1, y0) be an n−back and forth in X such that y0 = xa and

y1 = xb. From Definition 9.6, wn(π, X) = xa,ux
−1
b,t xb,tx

−1
a,u if y1 belongs to the tth element of

Cy0
n [Gn(y0, X)]; and y0 belongs to the uth element Cy1

n [Gn(y1, X)]. Finally, it is immediate

that wn(π, X) = 12m. 2

Lemma 9.8 If π is a triplet in X, then νv(π,X) = 12m.

Proof : Let π = (y0, y1, y2, y0) be a triplet in X. Then, we may suppose without

loss of generality (up to a new numbering of X) that y0 = x0, y1 = x1 and y2 = x2.

Since y0, y1 and y0 belong to a common loop, the surfels y1 and y2 belong to the same

element of Cy0
v [Gv(y0, X)] (say the first one, still without loss of generality); the two surfels

y0 and y2 belong to the same (say the second) element of Cy1
v [Gv(y1, X)]; and the two

surfels y0 and y1 belong to the same (say the third) element of Cy2
v [Gv(y2, X)]. Thus,

wv((y0, y1), X) = x0,1x
−1
1,2, wv((y1, y2), X) = x1,2x

−1
2,3, and wv((y2, y0), X) = x2,3x

−1
0,1 so that

w(π, X) = x0,1x
−1
1,2x1,2x

−1
2,3x2,3x

−1
0,1. Then,

w(π, X) = x0,1x
−1
1,2x1,2x

−1
2,3x2,3x

−1
0,1 = x0,1x

−1
2,3x2,3x

−1
1,0 = x1,0x

−1
1,0 = 12m. 2

Lemma 9.9 If π is an e−loop in X, then νe(π, X) = 12m.



CHAPTER 9. New characterization of topology preservation 141

Proof : Let π = (y0, . . . , yp) be an e−loop in X. First, we observe that p > 2 and

we may suppose that yi = xi for all i ∈ {0, . . . , p}. Then, from Definition 9.5 we have

wv(π,X) = wv((x0, x1), X).wv((x1, x2), X). . . . .wv((xp−1, xp), X).

Furthermore, for all k ∈ {1, . . . , p−1} let us denote by σ(k) the number of the element of

Cxk
v [Gv(xk, X)] which contains the surfel xk−1. Then, from the very definition of an e−loop

in X, it is immediate that σ(k) is also the number of the element of Cxk
v [Gv(xk, X)] which

contains the surfel xk+1 (indeed, xk−1 and xk+1 are both e−connected in π∗ ⊂ Nv(xk)∩X).

On the other hand, it is also obvious that x1 and xp−1 both belong to the same element

of Cx0
v [Gv(x0, X)], say the first one. It follows that :

wv(π, X) = x0,1x
−1
1,σ(1)x1,σ(1)x

−1
2,σ(2)x2,σ(2)x

−1
3,σ(2) · · · x−1

p−1,σ(p−1)xp−1,σ(p−1)x
−1
0,1

And then : wv(π, X) = x0,1x
−1
0,1 = 12m. 2

Proof of Proposition 9.6 :

Following Proposition 6.24 and Proposition 6.17, it is sufficient to prove this proposition

in the case when π and π′ are the same up to an elementary T −deformation when n = v

and the same up to an elementary S−deformation when n = e.

If n = e we suppose that π = π1.(s).π2 and π′ = π1.γ.π2 where γ is an e−back and forth or

an e−loop in X. Then, following Remark 9.3 we have νe(π, X) = we(π1, X)we(π2, X) and

νe(π
′, X) = we(π1, X)we(γ,X)we(π2). Now, from Lemma 9.7 and Lemma 9.9, we have

we(γ, X) = 12m and it follows that we(π1, X)we(γ, X)we(π2, X) = we(π1, X)we(π2, X).

Finally, νe(π,X) = νe(π
′, X).

If n = v we suppose that π = π1.(s).π2 and π′ = π1.γ.π2 where γ is a v−back and forth or

a triplet in X. Then, following Remark 9.3 we have νv(π, X) = wv(π1, X)wv(π2, X) and

νv(π
′, X) = wv(π1, X)wv(γ, X)wv(π2, X). Now, from Lemma 9.7 and Lemma 9.8, we have

wn(γ, X) = 12m and it follows that wv(π1, X)wv(γ, X)wv(π2, X) = wv(π1, X)wv(π2, X).

Finally, νv(π,X) = νv(π
′, X). 2

9.3.4 Important lemmas

The main result of this section is constituted by the following proposition :

Proposition 9.10 Let Y be an n−connected subset of Σ and x0 be an n−isolated surfel

of Y (i.e. x0 has no n−neighbor in Y ). Let s be the s−curve ((a, x0), (b, x0), (c, x0), (d, x0))
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where a, b, c and d are the appropriately named four e−neighbors of x0 in Y . If cn(s) is

n−homotopic to a trivial path in Y , then Y is a topological disk.

In the sequel of this section, Y is an n−connected subset of Σ and s is a parameterized

border of Y (i.e. s is a parameterization of a simple closed s−curve of border edgels of

Y ). In order to prove Proposition 9.10, we must state the following lemmas.

Lemma 9.11 If the n−path cn(s) is n−homotopic in Y to a trivial path and (cn(s))∗

has more than one surfel then cn(s) contains a surfel which is n−simple for Y .

In order to prove Lemma 9.11, we first state the following lemma.

Lemma 9.12 If wn(cn(s), X) contains a pair x−1
i,k xi,k for some i in {1, . . . , l} and some

k in {1, . . . , o(xj)} then the surfel ck of cn(s) such that xi = ck is n−simple for X.

Proof : If x−1
j,b xj,b occurs in wn(cn(s), X), then more precisely and from Definition 9.5,

xk,ux
−1
j,b xj,bxk′,t occurs for some k and k′ in {1, . . . , l}, u in {1, . . . , o(xk)} and t in {1, . . . , o(xk′)}.

It means that there exists in cn(s) a subsequence (cp, . . . , cp+q) such that :

– wn((cp, . . . , cp+q), X) = (wn((cp, cp+1), X) . . . wn((cp+q−1, cp+q), X) = x−1
j,b xj,b.

– cp = xk belongs to the bth element of Cxj
n [Gn(xj, X)], and xj belongs to the uth

element of Cxk
n [Gn(xk, X)].

– cp+q = xk′ belongs to the bth element of Cxj
n [Gn(xj, X)]; and xj belongs to the tth

element of Cxk′
n [Gn(xk′ , X)].

– ck = xj for all k ∈ {p + 1, . . . , p + q}

In other words, the parameterized border comes from an n
i
−connected component of

Gn(xi, X) to xi and exits from xi to the same nxi
−connected component of Gn(xi, X). It

is then immediate that Gn(xi, X) has a single nxi
−connected component (see Figure 9.1)

n−adjacent to xi which is itself n−adjacent to a surfel of X (Remark 9.2). Then, xi is

n−simple for X. 2

Proof of Lemma 9.11 : Since cn(s) is closed and has a length greater then 1 it

follows that wn(cn(s), X) is a word on AX with a length (number of symbols) greater

or equal to 4 (see Definition 9.5). Now, since cn(s) is n−homotopic to a trivial path in
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s

?

?

?

X

x

?
either X or X

Figure 9.1: If the two grey surfels belong to the same vx−connected of Gv(x,X) it is

clear that Card(Cx
v [Gv(x,X)]) = 1 and Card(Cx

e [Ge(x, X)]) = 1.

Y , it follows from Proposition 9.6 and Definition 9.5 for a word associated to a trivial

path, that wn(cn(s), X) = 12m. Then, wn(cn(s), X), having a length greater than 1, must

necessarily contain a pair x−1
j,b xj,b associated to a surfel xj and the bth nxj

−connected

component of Gn(xj, X) n−adjacent to xj. Indeed, from the very definition of the word

wn(cn(s), X), no pair of the form xj,bx
−1
j,b can occur in this word for any j ∈ {0, . . . , l}.

But, from Lemma 9.11, this implies that cn(s) contains a surfel which is n−simple for X.

2

Definition 9.7 (border edgels associated with an element of Cx
n[Gn(x,X)]) Let

x be an n−simple surfel of Z ⊂ Σ, and let C and D be the only elements of respectively

Cx
n[Gn(x, Z)] and Cx

n[Gn(x, Z)] (see Definition 5.3 and Remark 5.1). The two edgels of

the form (a, b) and (a′, b′), where {a, a′} ⊂ C and {b, b′} ⊂ D, are called the two border

edgels associated to the component C (see Figure 9.2).

: Nv(x) ∩X : x

� � � � � �
� � � � � �
� � � � � �

� � � � �
� � � � �
� � � � �

(a) For (n, n) = (e, v)

� � � � � �
� � � � � �
� � � � � �

� � � � �
� � � � �
� � � � �

(b) (n, n) = (e, v) or (v, e)

� � � � � �
� � � � � �
� � � � � �

� � � � �
� � � � �
� � � � �

(c) (n, n) = (v, e)

Figure 9.2: Border edgels associated with an nx−connected component of Gn(x,X).
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Lemma 9.13 Let x be a surfel of cn(s) which is n−simple for Y . Let f and f ′ be the

two border edgels associated with the unique connected component N0 of Gn(x, Y ). Let

s′ be a parameterized border of Y \ {x} which contains the two border edgels f and f ′

and such that cn(s′) is a path from x′ to x′ where x′ 6= x. Then the surfel path cn(s′) is

reducible in Y \ {x}.

Sketch of proof : First, cn(s)∗ must have more than 1 surfel since x is simple. It

follows that it is possible to find an edgel path s2 such that cn(s) and cn(s2) are the same

up to a change of parameter but the extremity of cn(s2) is different from x. Following

Lemma 2.6, cn(s2) is reducible too.

Now, let s′ be the s−path obtained by removing in s2 the edgels between f and f ′ which

contain x (maybe such edgels do not exist as in the case of Figure 9.2(a)) and possibly

replacing them with edgels of the form (x, q) where q belongs to N0. If f = (b, d) and

f ′ = (b′, d′) then let γ be the sub-path of cn(s2) from b to b′ associated with the s−path

from f to f ′ in s2, and let γ′ be the sub-path from b to b′ of cn(s′) associated with the

s−path from f to f ′ in s′. These two paths have the same extremities and are included

in C ∪ {x} where C is the only nx−connected component of Cx
n[Gn(x, Y )]. Then, it is

easily seen that γ is n−homotopic to γ′ in Y , so that the paths cn(s2) and cn(s′) are

n−homotopic too. It follows that cn(s2) is reducible in Y . 2

Proof of Proposition 9.10 : We show the existence of a sequence of deletion of

n−simple surfels which leads to {y} from Y where y is a surfel of Y .

Let s0 = ((a, x0), (b, x0), (c, x0), (d, x0)) be the s−curve of Proposition 9.10 and we set

Y 0 = Y . Now, if m ≥ 0 and if sm is a parameterized border of a set Y m with at least

2 surfels such that cn(sm) is n−homotopic to the trivial path in Y m, then, Lemma 9.11

shows that cn(sm) contains an n−simple surfel for Y m which we denote by ym. So, let

Nm
0 be the connected component of Gn(ym, Y m) n−adjacent to ym and let f and f ′ be

the two border edgels associated with Nm
0 . Then, let Y m+1 = Y m \{ym} and sm+1 be the

parameterized border of Y m+1 which contains the two border edgels f and f ′ as defined

in Lemma 9.13, and let bm+1 be the basepoint of cn(sm+1) (distinct from ym following

Lemma 9.13).

From Lemma 9.13, the path cn(sm) is n−homotopic to cn(sm+1) in Y m and cn(sm+1) is

reducible in Y m.
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Now, let im∗ : Πn
1 (Y m+1, bm+1) −→ Πn

1 (Y m, bm+1) be the morphism induced by the inclu-

sion of Y m+1 in Y m. Since ym is n−simple for Y , Lemma 5.1 implies that the morphism

im∗ is a group isomorphism, in particular im∗ is one to one.

Then, im∗ ([cn(sm+1)]Πn
1 (Y m+1,bm+1)) = [cn(sm+1)]Πn

1 (Y m,bm+1) but since the path cn(sm+1) is

n−reducible in Y m, it follows that im∗ ([cn(sm+1)]Πn
1 (Y m+1,bm+1)) = [1]Πn

1 (Y m,bm+1). On the

other hand, we have im∗ ([1]Πn
1 (Y m+1,bm+1)) = [1]Πn

1 (Y m,bm+1). Then, since im∗ is one to one

we obtain that [1]Πn
1 (Y m+1,bm+1) = [cn(sm+1)]Πn

1 (Y m+1,bm+1). In other words, the n−path

cn(sm+1) is reducible in Y m+1, so Y m+1 and sm+1 still satisfy conditions of Lemma 9.11.

By induction on the integer m we prove that while the set Y m has more than two surfels,

we can find a surfel ym ∈ Y m which is n−simple for Y m and so a set Y m+1 = Y m \ {ym}
which is lower n−homotopic to Y m and strictly included in Y m. Finally, there must exist

an integer k such that Y k is reduced to a single surfel {y}. It is clear from its construction

that Y k = {y} is lower n−homotopic to Y 0 = Y , so that Y is a topological disk. 2

9.4 Proof of Theorem 13

Proof of Theorem 13 :

We use Theorem 8 and prove that Condition 2 is implied by Condition 1 except in a

very particular case. So, we suppose that Condition 1 is satisfied and that there exists a

n−connected component A of Y which is included in X (i.e. A contains no surfel of X).

From Lemma 9.2 there exists a surfel x0 in A such that Y is lower n−homotopic to Y ∪
(A \ {x0}). Then, since i∗ and i′′∗ : Πn

1 (Y, B) −→ Πn
1 (Y ∪ (A \ {x0}), B) are isomorphisms

for all B ∈ Y , the group morphism i′∗ : Πn
1 (Y ∪ (A \ {x0}), B) −→ Πn

1 (X,B) induced by

the inclusion map i′ : Y ∪(A\{x0}) −→ X satisfying i∗ = i′∗◦i′′∗ is an isomorphism. Since

x0 belongs to the n−connected component A of Y , the surfel x0 is an n−isolated surfel

of Y ∪ (A \ {x0}) and let s be a parameterization of the border between Y ∪ (A \ {x0})
and {x0}. Let cn(s) be the n−path associated with the s−path s.

First, we suppose that cn(s) is not reducible in Y ∪ (A \ {x0}). It is clear that the same

path cn(s) is reducible in Y ∪A and so in X. Thus, let z0 be the base surfel of cn(s) and

j∗ be the morphism from Πn
1 (Y ∪ (A \ {x0}), z0) to Πn

1 (X, z0) induced by the inclusion of

Y ∪ (A\{x0}) in X. Then, j∗ cannot be one to one and from Lemma 9.1 the morphism i′∗

cannot be an isomorphism since B and z0 are n−connected in Y ∪ (A \ {x0}). It follows
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that i∗ is not an isomorphism and we get a contradiction.

Therefore cn(s) is n−homotopic to the path reduced to a single surfel in Y ∪ (A \ {x0}).
Then, by Proposition 9.10 we know that Y ∪ (A \ {x0}) is a topological disk. From

Lemma 9.2, Y is lower n−homotopic to Y ∪ (A \ {x0}) so we have χn(Y ) = χn(Y ∪ (A \
{x0}) = 1. Since Y 6= Σ, the set Y is a topological disk (Definition 5.8). Condition

2 of Lemma 5.2 shows that Y has a single n−connected component so Y = A. From

Lemma 9.2 it is straightforward that {x0} is lower n−homotopic to A, so that A is a

topological disk. Then, Y ∪ A = Σ and Y ∪ A ⊂ X ⊂ Σ so X = Σ. Since χn(Y ) = 1

and χn(Y ) = χn(A) = 1, then χn(Σ) = χn(Y ) + χn(Y ) = 2. This ends to prove that

Condition 1 of Theorem 8 is implied by Condition 2 of Theorem 8 except in the particular

case when X is the whole surface Σ which is a sphere and Y is a topological disk as well

as Y . And we obtain Theorem 13. 2



Conclusion of Part II

The intersection number, which was initially used in order to prove a basic Jordan theorem

for digital curves lying on a digital surface (see [32]), has been used here among other

tools to prove that the fundamental group can be used to completely characterize lower

homotopy between subsets of a digital surface. Thus, the intersection number appears as

a good tool for proving theorems of topology within digital surfaces.

Now, we have achieved to show that topology preservation within digital surfaces is

strictly related to properties involving the digital fundamental groups of objects. The

framework of digital surfaces appears as an intermediate framework for digital topology

between the 2D and 3D digital spaces. However, characterizing the lower homotopy

between subsets of Z3 is still a difficult and open problem. Indeed, the digital fundamental

group is not sufficient in this case.

Thus, the results of this part show that digital surfaces constitute an interesting and

fruitful field of investigations, intermediate step between the 2D and the 3D cases.

It is interesting to observe that the possible numbers of real intersections between closed

curves drawn on a closed surface of R3 is related to the genus of the surface. Indeed, it

is for example possible to draw two curves which intersect only once on the surface of a

solid torus whereas this is impossible on a sphere. The intersection number, which has

been defined here, allows such considerations in the digital field.
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Introduction to Part III

The digital fundamental group, as introduced by Kong in [45], involves equivalence classes

of paths according to a relation of deformation for digital closed paths. It is an important

tool in the field of digital topology and in particular, it is used as a criterion of topology

preservation for 3D digital objects (see [49],[8] and [29]). Now, the question remains

about the existence of an efficiently computable characterization of the lower homotopy

between objects of Z3. Such a difficult question cannot be solved today because of the

lack of theoretical tools for studying the topology of three dimensional discrete objects.

In particular, we should provide new tools dedicated to the study of homotopy classes of

discrete paths.

Several authors have been studying homotopy classes of paths in 2D. Rosenfeld and

Nakamura in [93] have, among other things, established the relation between 2D holes

and the fact that two curves can or cannot be deformed one into each other. In [66],

Malgouyres gives an algorithm to decide whether two closed paths in 2D are homotopic

or not. In [32] and [31] we have introduced a new tool which helps in distinguishing

homotopy classes of paths lying on the surface of a 3D object, and which have been

presented in the previous part. One purpose of this new part is to provide sufficient

conditions under which a discrete closed path in an object X ⊂ Z3 cannot be deformed

in X into another one.

More precisely, we introduce an analogue to the linking number of simple closed curves in

R3 defined in classical topology and knot theory (see [85]). Intuitively, the linking number

counts the number of times a given closed path is interlaced with another one. This linking

number has the same properties as its continuous analogue. A very intuitive one is that

it is left unchanged when one of the considered paths is continuously deformed, i.e by an

homotopic deformation in the sense of Definition 2.11, in the complement of the other.

Furthermore, as a step of the proof of the latter property, we also prove that the linking
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number well behaves with respect to concatenation of paths. In other words, the linking

number between the concatenation of two closed path and a third one is nothing but the

sum of their linking numbers with the third one. Because of its invariance property, the

linking number can be practically and formally used to distinguish two homotopy classes

of paths as soon as one can find a path which does not have the same linking number

with two elements, one in each of the considered classes.

Since the digital linking number is expected to be invariant under homotopic deformation

of the paths in the complement of each other, it will be defined for paths following the

classical duality for adjacencies. Clearly, two closed and linked 26−paths can be unlinked

by an homotopic deformation of one in the complement of the other whereas this cannot

occur between a 26−path and a 6−path (with the associated relations of deformation).

Note that in this part, we chose not to consider the continuous analogues of the discrete

paths in order to prove the main properties of the linking number. On the other hand,

the proofs given here for the main theorems are self sufficient and only use the basic

notions classically defined in the field of digital topology and which have been recalled in

Part I.

Furthermore, this linking number leads to an intuitive proof of the fact that the number

of tunnels in an object X ⊂ Z3 is strictly related to the number of tunnels in its com-

plement (this is the subject of Chapter 12). Indeed, the number of tunnels mentioned

here must be understood as the number given by the computation of the Euler charac-

teristic. In this case, the equality between the two numbers is immediate. However, the

localization of the tunnels is not provided by the Euler characteristic. This fact will be

illustrated in Section 10.1. Then, a solution to this drawback consists in the use of the

digital fundamental group. But a link between tunnels of an object and tunnels of its

complement is then difficult to state and the linking number will help in this case. Thus,

in Chapter 12, we will prove that a new and concise characterization of 3d simple voxels

may be given using the digital fundamental group. This characterization is said to be

new since it does not involve the digital fundamental group of the complement the object

in order to characterize the fact that a voxel is simple. Indeed, it is shown that the new

characterization is equivalent to the classical one, although it has one less condition.



Chapter 10

Previous characterizations of

topology preservation

In this chapter, we explain how several authors have defined simple voxels (i.e. simple spels

in Z3). Indeed, there exists two main ways to define topology preservation by deletion

of a voxel in an object of Z3. The first one involves the Euler characteristic whereas the

second uses the digital fundamental group. Both methods come from algebraic topology

and have been adapted to digital topology.

As introduced in Section 3.1, continuous deformations can be simulated in digital space

by sequences of elementary local deformations (i.e. addition or deletion of points) which

are admitted as topologically preserving. Thus, it is important to rigorously establish

what means topology preservation when one deals with the deletion or addition of points.

Within objects of Z3, in addition to connectedness considerations as in the 2D case (see

Definition 3.6), we must also take care to preserve the tunnels of the object. Tunnels are

those things which distinguish the two objects depicted in Figure 5.1 of the introduction

to Chapter 5. Now, there are two formal ways to define tunnels as already mentioned

in the previous part. The Euler characteristic can be used to count their number in an

object but shows its insufficiency to fully characterize topology preservation. The second

one, the digital fundamental group, uses the fact that a tunnel in an object of Z3, as well

as in a digital surface, can be detected by the existence of a closed path which is not

reducible in this object. In the two following sections, we will recall both tools.
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10.1 Using the Euler characteristic

10.1.1 Definition of χn(X)

Given a subset P of R3, we say that P is polyhedral if P can be seen as the union of points,

closed straight line segments, closed triangles and closed tetrahedra. In the context of

cellular complexes, points, segments, triangles and tetrahedra are called d−cells with a

respective dimension d equal to 0, 1, 2 and 3. Now, the Euler characteristic of such an

object, denoted by χ(P ), is the following alternated sum (see [49] or [71]) :

χ(P ) = number of 0−cells - nb. of 1−cells + nb. of 2−cells - nb. of 3−cells (10.1)

In Figure 10.1 we have depicted several polyhedral sets with the corresponding alternated

sum.

1-0+0-0=1 2-0+0-0=2 2-1+0-0=1 3-3+0-0=0

3-3+1-0=1

(f)

(a) (b) (c) (d) (e)

5-6+0-0=-1

4-6+4-1=1

(g)

7-13+7-1=0 7-13+1-0=-5

(i)(h)

Figure 10.1: Example of Euler characteristic of several polyhedral sets, and the corre-

sponding alternated sums.

Then, it can be seen that the Euler characteristic of a set P is also equal to the number of

connected components of P plus its number of cavities minus the number of tunnels in P .

For example, the set depicted in Figure 10.1(e) has two tunnel since it is connected and

has no cavities. Now, some methods have been developed by several authors to compute

the Euler characteristic of a digital object. This Euler characteristic uses the notion of a

polyhedral continuous analogue of a digital object. Obviously, the way to construct such

continuous analogue is very dependent to the couple of adjacencies considered. Thus,

the continuous analogue of the object depicted in Figure 10.2(a) could be as depicted in
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Figure 10.2(b) for (n, n) = (26, 6) whereas it may be like in Figure 10.2(c) if (n, n) =

(6, 26). See [48] for details about the way such a continuous analogue can be constructed.

If we denote by Cn(X) the continuous analogue of a digital object X, then χn(X), the

Euler characteristic of X, is defined by χn(X) = χ(Cn(X)).

(a) An object X ⊂ Z3 (b) C26(X) (c) C6(X)

Figure 10.2: An object X of Z3 and its two possible continuous analogues.

Now, provided a way to compute the Euler characteristic of a digital object by considering

its continuous analogue, and since the number of connected components of the object and

its complement are easily computable; it becomes possible to give the number of tunnels

in a digital object of Z3. Then, such defined tunnels can be used to give some local

characterization of simple voxels. However, we will see that the Euler characteristic does

not allow us to give an acceptable global characterization of simple points, though it is

sufficient to provide a local one.

10.1.2 First characterization of simple voxels

Definition 10.1 (simple voxel : ambiguous definition) Let X ⊂ Z3 and x ∈ X.

The voxel x is n−simple for X if the four following conditions are satisfied :

i) X and X \ {x} have the same number of n−connected components.

ii) X and X ∪ {x} have the same number of n−connected components.

iii) No tunnel of X is removed or created by deletion of x.

iv) No tunnel of X is removed or created by addition of x.
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This first definition will be clarified in the sequel, and we will see that it can be locally

characterized using connectivity considerations in some particular neighborhoods (sub-

section 10.2), this in an analogous way to the case of simple pixels in two dimensions.

In fact, the restriction of Definition 10.1 to the case of two dimensional images leads to

the definition of a simple pixel (Definition 3.6). Indeed, the removal or the creation of a

tunnel in a subset of Z2 respectively implies the merging of two connected components

of the background or the creation of a connected component in the background.

Now, how can we characterize the fact that some tunnels are created or removed in an

object ? One could think of counting the number of tunnels using the Euler characteristic

as well as the numbers of connected components (Conditions i and ii of Definition 10.1)

are unchanged. The problem of such a characterization can be summed up by observing

the case of the object X depicted in Figure 10.3 analyzed with the 6−adjacency relation.

In this case, the two objects depicted have the same number of connected components as

their complements. Furthermore, they have the same Euler characteristic (equal to 0).

However, the voxel x which has been removed from the object of Figure 10.3(a) to obtain

the object the continuous analogue of which is depicted in Figure 10.3(c), is obviously not

simple. The fact is that a tunnel was created and another one was removed by deletion

of the voxel x, so that the Euler characteristic is left unchanged.

x

(a) To views of an object X

and a voxel x.

(b) C6(X) (c) C6(X\{x})

Figure 10.3: A case when a tunnel is created whereas another one is simultaneously

removed.

In fact, the problem is that the Euler characteristic does not allow to check the fact that

tunnels have moved. However, it can be used to show that some tunnels are created

or removed locally (i.e. in the neighborhood of a voxel) but not globally. Thus, the

characterization which will be recalled in next section is correct since it characterizes
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locally the configurations for which a voxel can be removed, preserving the topological

properties of the object. But this characterization is valid since it is based on the fact

that “large” tunnels removal implies some local disconnections in the object.

10.1.3 Characterization of simple voxels using χn(N26(x) ∩X)

Using the Euler characteristic, Tsao and Fu in [101] have given the following local char-

acterization for 3D simple voxels. In this definition, the Euler characteristic is used in

order to check that the number of tunnels does not change in the neighborhood of the

voxel considered.

Definition 10.2 ([101]) Let X be a subset of Z3 and (n, n) ∈ {(6, 26), (26, 6)}. The

point x is an n−simple if and only if the three following conditions are satisfied :

i) x is n−adjacent to only one n−connected component of N26(x) ∩X.

ii) x is n−adjacent to only one n−connected component of N26(x) ∩X.

iii) χn(X ∩N26(x)) = χn({x} ∪ (X ∩N26(x))).

Following this characterization, the point whose 26−neighborhood is depicted in Fig-

ure 10.4 is not 6−simple since Condition iii) of Definition 10.2 is not satisfied. Indeed,

in this case, C6({x} ∪ (X ∩ N26(x))) has a tunnel whereas C6(X ∩ N26(x)) does not.

However, in the case of Figure 10.5, the point x is not 6−simple since it is 6−adjacent to

two 6−connected components of the object in its 26−neighborhood. Nevertheless, in this

case, Condition iii) of Definition 10.2 is satisfied but not Condition i). In this example,

we see that removal of large tunnels is locally characterized by some disconnection in the

neighborhood of a voxel. Indeed, the fact that a tunnel is removed by deletion of the

voxel x of Figure 10.3(a) is detected since the voxel x is adjacent to two 6−connected

components of X in its 26−neighborhood. Following this idea, G. Bertrand found some

reduced neighborhoods for which small tunnels are also characterized by such localized

disconnection : the geodesic neighborhoods.
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Figure 10.4: A local tunnel for n =

6 or n = 6+.

x

Figure 10.5: A not local tunnel.

10.2 Characterization using geodesic neighborhoods

In latter subsection, we saw that the Condition iii) of Definition 10.2 was useful in order

to characterize the presence of small tunnels in the neighborhood of a voxel. However, for

larger tunnels, it appears that local connectivity may be sufficient. In fact, it is possible

to consider some smaller neighborhoods than the 26−neighborhood when checking the

n−simplicity of a voxel. Then, connectivity considerations within such reduced neigh-

borhoods are sufficient to check the possible deletion of small tunnels as well as larges

tunnels, in the object and in its complement. Of course, global connectivity changes

are also characterized by some considerations involving small neighborhoods. Then, the

geodesic neighborhoods have been introduced by G. Bertrand in [8] and we recall here

their definition. In the sequel of this section, X is a subset of Z3 and x is a voxel of X.

First, for n ∈ {6, 6+, 18, 26} we recursively define the sets Nk
n(x,X) for k ∈ {1, 2, 3} by :

– N1
n(x,X) = Nn(x) ∩X, and

– Nk
n(x,X) = Nk−1

n (x,X) ∪ {y ∈ N26(x) | ∃z ∈ Nk−1
n (x,X), y ∈ Nn(z) }.

Definition 10.3 (geodesic neighborhood [8]) The geodesic n−neighborhood of x in

X denoted by Gn(x,X) for n ∈ {6, 6+, 18, 26} is defined as follows :

– G6(x, X) = N2
6 (x, X) – G6+(x,X) = N3

6 (x,X)

– G18(x,X) = N2
18(x,X) – G26(x,X) = N26(x) ∩X

The geodesic neighborhood Gn(x,X) can be seen as the set obtained after a finite number

of morphological dilatations of the point x inside N26(x) ∩ X using the n−adjacency

elementary ball as a structuring element, set from which the voxel x is removed. Some

example of such sets are depicted in Figure 10.6.
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: N26(x) ∩X : N1
6+(x,X) : N2

6+(x,X) : N3
6+(x,X) = G6+(x,X)

T6+(x,X) = 2

(a) Construction of G6+(x, X)

: N26(x) ∩X : N1
18(x,X) : N2

18(x,X) = G18(x, X)

(b) Construction of G18(x,X)

Figure 10.6: Examples of geodesic neighborhoods

Definition 10.4 (topological numbers) We define the topological number associated

to x and X, and we denote by Tn(x,X) the number of n−connected components of

Gn(x,X).

Now, G. Bertrand stated and proved the following local characterization for simples

points in [8] for (n, n) ∈ {(6+, 18), (18, 6+)} and together with G. Malandain in [11] for

(n, n) ∈ {(6, 26), (26, 6)}.

Proposition 10.1 The point x ∈ X ⊂ Z3 is n−simple for X if and only if Tn(x,X) = 1

and Tn(x,X) = 1.

This proposition provides a local and efficient characterization of simple voxels in Z3

which does not require the computation of the Euler characteristic of the neighborhood

of the voxel x, unlike Definition 10.2.

We have depicted in Figure 10.7 several local configurations of voxels which are either

n−simple or not n−simple for n ∈ {6, 6+, 18, 26}. For example, the voxel x of Fig-

ure 10.7(a) is not 18−simple since the removal of this voxel would either create a new

18−connected component or remove a (large) tunnel of the object. However, the same
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b

a

x

: N26(x) ∩X

x is not 18−simple since T18(x, X) = 2
x is 26−simple since T26(x,X) = T6(x, X) = 1

(a)

x

p

x is 18−simple since T18(x,X) = T6+(x, X) = 1
x is not 26−simple since T26(x, X) = 2

(b)

x

x is neither 26−simple nor 18−simple
since T26(x, X) = T18(x, X) = 2

(c)

a

b
x

x is 18−simple since T18(x,X) = T6+(x, X) = 1
x is not 26−simple since T6(x, X) = 2

(d)

x

x is not 6−simple since T6(x,X) = 2
x is (6+)−simple since T6+(x,X) = T18(x, X) = 1

(e)

Figure 10.7: Simple and not simple voxels in Z3.
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voxel is 26−simple since the two points a and b of this figure are 26−connected. In

the case of Figure 10.7(b), the point x is not 26−simple since the removal of x would

either create a new 26−connected component or remove a 26−tunnel of X; whereas it is

18−simple since the voxel p is not 18−adjacent to x so that a similar disconnection or

tunnel deletion cannot occur.

The case of Figure 10.7(d) need a more detailed description. Indeed, in this case, the

point x is not 26−simple since T6(x, X) = 2 whereas it is 18−simple since T18(x,X) =

T6+(x, X) = 1. In other words, this point is not 26−simple since its removal would

either merge two 6−connected components of X or create a (large) 6−tunnel in X. In

Chapter 12, we will prove that in this case, either a 26−tunnel of X is created or two

6−connected components of X are merged by deletion of x.

In the case of Figure 10.7(e) we have illustrated the usefulness of the geodesic neigh-

borhoods in order to avoid the use of the Euler characteristic for the detection of small

tunnels. Indeed, the set of grey points in this figure together with x constitutes a tunnel

in X for (n, n) = (6, 26) (the two dotted points of X are 26−adjacent) and we have

T6(x,X) = 2. Nevertheless, for (n, n) = (6+, 18) we observe that these voxels do not

constitute a tunnel (the points of X depicted with dotted lines are not 18−adjacent) and

we have T6+(x,X) = 1.

Now, we can find two limits to the use of the Euler characteristic in order to characterize

topology preservation in Z3. First, it is very difficult to use the Euler characteristic

to formalize the fact that the tunnels of Figures 10.3(b) and 10.3(c) are distinct. And

this limit makes the characterization ambiguous. On a second hand, another definition

for tunnels has been used by Morgenthaler in [75] and also by Bertrand in [8, 11]. This

definition was introduced in order to avoid the latter drawback of the Euler characteristic,

and says that a tunnel is detected whenever there exists a closed path in an object which

is not reducible in the object, following the idea of the definition of simply connected

subsets of a topological space which was recalled in Part I. This idea, which motivated the

introduction by Kong of the digital fundamental group ([45]), was then used to formalize

in proofs the sentences “no tunnel of X is created or removed” and “no tunnel of X is

created or removed” of Definition 10.1. However, some arguments are no longer valid in

this new context when they use both the two possible definitions for tunnels. An example

of such an argument is summarized as follows : Morgenthaler stated in [75] that NH(X) =
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NH(X) where NH(X) is the number of tunnels in X (Holes using the terminology

of [75]). This property is deduced from the definition of the Euler characteristic. Now,

if a tunnel of the complement of X is created by deletion of the point x, i.e. there exists

a closed path π in X ∪ {x} which is not homotopic to a trivial path in X ∪ {x} but no

closed path in X is homotopic to the path π ; then since NH(X) = NH(X) we deduce

that a tunnel has been created in X.

In practice, it is not so difficult to prove that a tunnel is created in the complement

of an object by deletion of a voxel (see Section 12.1), whereas it is difficult to prove

the same thing for the object without using the previous argument. But the fact is

that this latter argument uses some close but different approaches to the definition of a

tunnel which involves two distinct topological invariants : the Euler characteristic and an

informal version of the digital fundamental group. Nevertheless, the link between these

two invariants has not been properly proved in the digital context, and this can appear as

unsatisfactory. Now, a convenient formalization was proposed by Kong using the digital

fundamental group, which finalizes the ideas given by Morgenthaler in [75] and will be

presented in the next subsection.

10.3 Using the Digital Fundamental Group

The digital fundamental group, introduced by Kong in [45] and the definition of which is

recalled in Section 2.3, allows to formalize the characterization of simple voxels as follows,

which is unambiguous unlike Definition 10.1 :

Definition 10.5 Let X ⊂ Z3 and x ∈ X. The voxel x is said to be n−simple for X if

the four following conditions are satisfied :

i) X and X \ {x} have the same number of n−connected components.

ii) X and X ∪ {x} have the same number of n−connected components.

iii) For each voxel B in X \{x}, the group morphism i∗ : Πn
1 (X \{x}, B) −→ Πn

1 (X, B)

induced by the inclusion map i : X \ {x} −→ X is an isomorphism.

iv) For each point B′ in X, the group morphism i′∗ : Πn
1 (X, B′) −→ Πn

1 (X ∪ {x}, B′)

induced by the inclusion map i′ : X −→ X ∪ {x} is an isomorphism.
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The definition of the morphism induced by an inclusion map can be found in Section 2.3.2.

This definition appears as very convenient one since it allows to formalize the fact that

X and X \ {x} [resp. X and X ∪ {x}] have not only the same number of tunnels, but

also the fact that these tunnels are the same. As an illustration of this property, we shall

come back to the example given Page 156 (Figure 10.3).

We have depicted in Figure 10.8(a) an object X (black points) and a closed path c from

a point B to B in X. Then, the homotopy class [c]Π6
1(X,B) is obviously the identity

element of (Π6
1(X, B), ∗) since c is 6−homotopic to the path (B, B) in X. However, the

same path c is obviously not 6−reducible in X \ {x} (Figure 10.8(b)). It follows that

the group morphism i∗ from Π6
1(X \ {x}, B) to Π6

1(X,B) induced by the inclusion of

X \{x} in X is not one to one. Indeed, i∗([c]Π6
1(X\{x},B)) = i∗([(B, B)]Π6

1(X\{x},B)) whereas

[c]Π6
1(X\{x},B) 6= [(B,B)]Π6

1(X\{x},B).

On a second hand, the equivalence class of the path c′ in the object depicted in Fig-

ure 10.9(a), which is obviously not equal to the identity element of (Π6
1(X,B), ∗), cannot

by reached by the morphism i∗ since no closed path of X \ {x} is 6−homotopic to the

path c′ in X. In other word, the morphism i∗ is not onto.

B

c

X

6-adjacence

(a) An object X.

B

c

X \ {x}

6-adjacence

(b) The object X \ {x}.

Figure 10.8: The morphism induced by the inclusion of X \ {x} in X is not one to one.

Finally, we see that Condition iii) of Definition 10.5 seems sufficient to detect when,

simultaneously, a hole is created and a hole is removed.

10.4 Other approaches for a local characterization

First, we have to mention here some works the purpose of which is to find some efficient

local characterizations of simple voxels. For example, Saha et al. give in [96] a local
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B

c’

X

6-adjacence

(a) An object X.

B

X \ {x}

6-adjacence

(b) The object X \ {x}.

Figure 10.9: The morphism induced by the inclusion of X \ {x} in X is not onto.

characterization of simple voxels for (n, n) = (26, 6) (equivalent to the one given in [11])

which leads to an efficient algorithm to detect this kind of points.

Moreover, some other approaches can be used to characterize simple voxels. Indeed, in

[46], T.Y. Kong gives a local characterization of 3D simple points, based an attachment

sets, which has the good property of being easily visualized.



Chapter 11

The linking number

In the previous chapter, we have recalled the definition of simple voxels in Z3 and given

few formal definitions of this property. In this part, we are interested by the definition

of a global characterization of simple voxels which involves the digital fundamental but

which is more concise than Definition 10.5. Indeed, our purpose is to state that the

Condition iv) of Definition 10.5 is implied by Conditions i), ii) and iii) of this definition.

This idea will be illustrated in the next section and constitues one of the motivations of

the definition of the digital linking number.

11.1 Motivation

Condition iii) of Definition 10.5 states that a voxel is simple if any tunnel of an object still

exists and at the same place in the object from which the voxel has been removed. On the

other hand it also requires that no new tunnel is created in the object by deletion of the

voxel. Let us consider the local configuration depicted in Figure 11.1(a) where the central

voxel x is not n−simple for n ∈ {6, 6+, 18, 26}. Indeed, this configuration may be a part

of the hollow cube X ′ depicted in Figure 11.1(b) so that two background components

are merged by removal of this voxel (Condition ii of Definition 10.5). Nevertheless,

this local configuration may also be a part of the object X ′′ of Figure 11.1(c) so that a

tunnel appears in X ′′ ∪ {x} as illustrated by Figure 11.1(d). Indeed, the closed path c of

Figure 11.1(d) is not reducible in X ′′ ∪ {x} so that X ′′ ∪ {x} has a tunnel whereas X ′′

does not. . We will see in Section 12.1 how the existence of such a tunnel can be proved

in this case. Now, we also observe in Figure 11.1(d) that the black path π in X ′′ \ {x}
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is also not reducible in X ′′ \ {x}. However, this very intuitive fact is not easy to prove

using the tools which are available in the digital framework. Now, a way to achieve such

a proof is to state that the two paths π and c of Figure 11.1(d) are linked and cannot be

unlinked if the only allowed deformation is an homotopic deformation of the paths π and

c respectively in X \ {x} and in X ∪ {x} in the complement of each other.

x { , } X

(a) x and N26(x)∩X (b) X ′ (c) X ′′

π

c

(d) X ′′ \ {x}

Figure 11.1: A tunnel is created in X if and only if one is created in X (see the proof of

Theorem 16).

Similarly, let us observe the configuration of Figure 11.2(a). If such a configuration

appears as in the object Y ′ of Figure 11.2(b), then the point y is not simple since a

connected component of Y ′ is sliced is two pieces by removal of the voxel y. Now, if the

same configuration appears in the object Y ′′ of Figure 11.2(c), then we may prove easily

(and in a similar way to the case of the path c in Figure 11.1(c)) that the closed path

π′ is not reducible in Y ′′ so that Y ′′ has a tunnel whereas Y ′′ \ {y} obviously does not.

Again, using the linking property previously mentioned, we should also be able to prove

that the closed path c′ of Figure 11.2(d) is also not reducible in Y ′′ so that a (the) tunnel

of Y ′′ will also have disappeared after deletion of the voxel y.

Then, this gives a first idea of the fact that the creation [resp. the deletion] of a tunnel in

an object by removal of a point is strictly related to the creation [resp. deletion] of a tunnel

in its complement. Now, such a property is proved immediately when considering only

the number of tunnels as counted using the Euler characteristic. Indeed, following [75],

if we denote by NCC(X), NC(X) and NT (X) respectively the number of n−connected

components, cavities and tunnels of a subset X of Z3, then it is straightforward that

NCC(X) = NC(X) and NC(X) = 1 + NCC(X). Now, the Euler characteristic of

a digital object, following equation 10.1, may be computed by counting the number of
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y { , } Y

(a) y and N26(x) ∩ Y (b) Y ′ (c) Y ′′

π ’c’

(d) Y ′′

Figure 11.2: A tunnel is removed in X if and only if one is removed in X.

occurrences of a finite number of small patterns in the object as proposed in [75] and

[74]. Then, following this computation method, [74] contains a proof of the fact that

χn(X) = 1 + χn(X). Finally, using this latter equality and the former ones, it comes

that the number of tunnels in X is equal to the number of tunnels in X. However, as

explained before, the number of tunnels is a less precise invariant than the fundamental

group. Nevertheless, the linking number will allow to establish such a connection using

the only topological invariant considered in Definition 10.5 : the digital fundamental

group.

11.2 The digital linking number

In this section, we define the linking number between two closed paths of voxels which

do no intersect one each other. This number is nothing but the linking number of the

continuous analogue of the two digital curves as defined in knot theory. This linking

number counts the number of times a given closed path is interlaced around another one.

Since our further goal is to apply this tool to prove theorems about topology in a digital

space, we are interested by the linking number between a closed n−path and a closed

n−path where (n, n) ∈ {(6+, 18), (6, 26), (18, 6+), (26, 6)}. We give three examples of

pairs of closed paths and their associated linking numbers in Figure 11.2. Classically, the

linking number is computed by algebraically counting the occurrences of crosses like those

depicted in Figure 11.3 in a 2 dimensional regular projection of the paths (see [85]). In

our case, we define the linking number in such a way that it can be immediately obtained

by integer only computations using the coordinates of the voxels constituting the paths.
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π

c

(a) Count -1 for each

occurrence of such a

cross in the projec-

tion.

π
c

(b) Count +1 for each

cross of this type.

c

π

(c) The linking number asso-

ciated to this projection is -2.

Figure 11.3: The way to compute the “classical” linking number from a regular projection

of two closed paths c and π.

(a) A closed 18−path and a

closed 6−path with a linking

number of ±1.

(b) A closed 18−path and a

closed 6−path with a linking

number of ±2.

(c) The Whitehead’s link,

the linking number of which

is 0.

Figure 11.4: Three kinds of links.
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For example, the linking number can be computed immediately for paths as depicted by

Figure 11.5. We give the basic idea of the computation in this case. First, we choose to

compute the linking number using a “pseudo-2D” projection of the two paths on the plane

which contains the first two coordinates axes. We call this projection a “pseudo-2D” one

since the data of the third coordinate of the voxels is of course never forgotten. Then we

observe that the only voxel of the grey path which has a common projection with some

white voxels (exactly four ones) is the point xi. Then, we look for voxels of the white

path which have a greater third coordinate than xi and the same projection as xi (as

the voxels a and b in Figure 11.5). For each such voxel, a contribution depending on the

position of the next and previous voxel of the white path which have a distinct projection

from xi is computed. In this example, the two contributions of the voxels a and b will

have opposite signs. The sum of these contributions is the linking number between the

two paths, zero in this case. In fact, using half contributions exactly as in the case of the

intersection number introduced in previous part, we will count the number of transversal

oriented intersections between the projection of the two paths; furthermore only when

the first one goes before the second one (according to the third coordinate axe). Thus, in

Figure 11.7(c) and Figure 11.7(d) we have marked in dark grey the two sets of consecutive

voxels of the first 6−path of Figure 11.7(a) which have a common projection with some

voxels (in light grey) of the 18−path. Then, taking into account the position of the voxels

marked with crosses allows to check if such a projective intersection is transversal (an

example of a tangent intersection is given in Figure 11.8). Finally, counting algebraically

the three projective transversal intersections in Figure 11.7 leads to a linking number of

±1 depending on the parameterization of the paths.

Notation 11.1 We will denote by P the following map :

P : Z3 −→ Z2

(x1, x2, x3) 7−→ (x1, x2)

Now, we need to define the predecessor and the successor of a voxel xi of an n−path

c according to a projection P which are the first voxels which come respectively before

and after xi in the parameterization of c and whose projection by P is distinct from the

projection of xi. Observe that the two number Pred and Succ defined here are subscripts

of the parameterization of the paths. Finally, the data of these subscripts will allow to

define an orientation for intersections in the projection of two 3d closed paths.
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b

1

2

ax

3

Figure 11.5: Two 3D closed paths and their pro-

jection, their linking number is 0.

(-1,0)

(0,-1)

(-1,1)(0,1)

(0,0)

(1,1)

(1,0)

(1,-1)(-1,-1)

Figure 11.6: A projective move-

ment.

(a)

P

(b)

P

(c)

Figure 11.7: Example of projective transversal intersections between two closed paths in

Z3.

P

(a)

P

(b)

Figure 11.8: Example of projective tangent intersections between two closed paths in Z3.
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Definition 11.1 (Pred and Succ) Let c = (xi)i=0,...,q be a closed n−path and xi be a

voxel of c for i ∈ [0, q]. Then, Succc(i) is the lowest integer l greater than i such that

P(xi) 6= P(xl); if such an integer l does not exist then Succc(i) is the lowest l < i such

that P(xi) 6= P(xl). If in turn such an l does not exist then, clearly P(xi) = P(xl) for all

l ∈ {0, . . . , q} and we define Succc(i) = i.

Similarly, Pred c(i) is the preceding subscript l of i in the cyclic parameterization of c such

that P(xi) 6= P(xl), or Pred c(i) = i if P(xi) = P(xl) for all l ∈ {0, . . . , q}.

Still in order to count oriented transversal intersections in the projection of the two paths,

we define the following notion of a projective movement.

Definition 11.2 (projective movement) Let c = (xi)i=0,...,q be a closed n−path and

i ∈ {0, . . . , q}. Let V be the 8−neighborhood of (0, 0) in the plane, i.e. V = ({−1, 0, 1} ×
{−1, 0, 1})\{(0, 0)}. We define the projective movement Pc(i) ∈ V ×V associated to the

subscript i of c by :

Pc(i) = ((x1
Predπ(i)−x1

i , x
2
Predπ(i)−x2

i ), (x
1
Succπ(i)−x1

i , x
2
Succπ(i)−x2

i )) = (Pc(i)
Pred , Pc(i)

Succ).

The projective movement represents the position of the previous and the following voxels

of xi in c whose projection do not coincide with the projection of xi. These positions are

normalized in a 3×3 grid centered at the point (0, 0) which is associated to the projection

of xi. Hence, the projective movement of the voxel xi of Figure 11.5 is ((−1, 0), (1, 0))

and can be seen as depicted by Figure 11.6. Note that this projective movement will be

used only for subscripts i ∈ {0, . . . , q − 1} such that Pred c(i) = i − 1. Indeed, we have

to count a single contribution to the linking number for any sequence of voxels of a path

which have the same projection, and we arbitrary choose to count contributions at the

first subscript of each such sequence.

Definition 11.3 (left and right) Let c = (xi)i=0,...,q be an n−path and V be the set

introduced in Definition 11.2. One can parameterize the points of V using the counter-

clockwise order around the point (0, 0). Then, given a projective movement P = Pc(i),

we define the two sets Left(P) and Right(P) as follows :

Right(P) is the set of points met when looking after points of V from PPred to PSucc

following the counterclockwise order on V , excluding PSucc and PPred .

Left(P) is the set of points met when looking after points of V from PSucc to PPred

following the counterclockwise order on V , excluding PSucc and PPred .
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Example : If P = ((−1, 0), (1,−1)) then Right(P) = {(−1,−1), (0,−1)} and Left(P) =

{(1, 0), (1, 1), (0, 1), (−1, 1)}.

Notation 11.2 In the following we say that two paths π and c satisfy the property

H(π, c) if π is a closed n−path for n ∈ {6, 6+} and c is closed n−path such that c∗∩π∗ = ∅.

In the sequel of this part we consider n ∈ {6, 6+}. Furthermore, and in order to shorten

notations, we will use the following notation for intervals of integers.

Notation 11.3 Let a ∈ Z and b ∈ Z with a ≤ b. Then we use the following notations

for intervals of integers :

[a, b] = {i ∈ Z | a ≤ i ≤ b}
[a, b[ = {i ∈ Z | a ≤ i and i < b}
]a, b] = {i ∈ Z | a < i and i ≤ b}
]a, b[ = {i ∈ Z | a < i and i < b}

Definition 11.4 (contribution to the linking number) Let π = (yk)k=0,...,p and

c = (xi)i=0,...,q be two closed paths such that H(π, c) holds. We define as follows Wπ,c(k, i),

the direct contribution to the linking number of a couple (k, i), where 0 ≤ k ≤ p and

0 ≤ i ≤ q.

• If y3
k > x3

i or P(yk) 6= P(xi) or P(yk) = P(yk−1) or P(xi) = P(xi−1) then Wπ,c(k, i) = 0,

• otherwise, let Pπ = Pπ(k) and Pc = Pc(i) be the projective movements associated to the

subscripts i and k (note that in this case Predπ(k) = k − 1 and Pred c(i) = i− 1) :

– If PPred
π = PSucc

π then Wπ,c(k, i) = 0,

– otherwise Wπ,c(k, i) = W−
π,c(k, i) + W+

π,c(k, i) where

W−
π,c(k, i) = −0.5 if PPred

c ∈ Left(Pπ), W+
π,c(k, i) = −0.5 if PSucc

c ∈ Right(Pπ),

W−
π,c(k, i) = 0.5 if PPred

c ∈ Right(Pπ), W+
π,c(k, i) = 0.5 if PSucc

c ∈ Left(Pπ),

W−
π,c(k, i) = 0 otherwise. W+

π,c(k, i) = 0 otherwise.

Definition 11.5 (linking number) Let π = (yk)k=0,...,p and c = (xi)i=0,...,q be two

closed paths such that H(π, c) holds. We define the linking number of π and c (denoted

by Lπ,c) by :

Lπ,c =

p−1∑

k=0

q−1∑
i=0

Wπ,c(k, i) (11.1)
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Notation 11.4 Given two closed paths π = (yk)k=0,...,p and c = (xi)i=0,...,q, we denote :

For i ∈ [0, q], Lπ
π,c(i) =

p−1∑

k=0

Wπ,c(k, i) and for k ∈ [0, p], Lc
π,c(k) =

q−1∑
i=0

Wπ,c(k, i).

11.3 A new topological invariant

Now, we state the two main results which are proved in this chapter about the invariance

of the linking number up to an homotopic deformation of any the two paths for which it

is defined. These very intuitive results, again very close to the similar result of the con-

tinuous case are proved in this chapter by using technical but very simple considerations

about integer coordinates of voxels.

Theorem 14 Let π and π′ be two closed n−paths (n ∈ {6, 6+}) and c be a closed n−path

of Z3 such that π∗ ∩ c∗ = ∅ and π′∗ ∩ c∗ = ∅. If π is n−homotopic to π′ in Z3 \ c∗ then

Lπ,c = Lπ′,c.

Theorem 15 Let π be a closed n−path (n ∈ {6, 6+}), let c and c′ be two closed n−paths

of Z3 such that π∗ ∩ c∗ = ∅ and π∗ ∩ c′∗ = ∅. If c is n−homotopic to c′ in Z3 \ π∗ then

Lπ,c′ = Lπ,c′.

As an illustration, one can be convinced that any 18−homotopic deformation of the

18−closed white path of Figure 11.4(b) in the complement of the 6−closed grey path

cannot change the linking number associated to the two paths.

11.4 Useful properties

In this section, we give the definition of the indirect contribution to the linking number

which allows to compute the linking number by looking after voxels of the 18 or 26−path

and counting the crossings with the projection of the 6−path. This leads to an equiv-

alent definition of the linking number, which allows to prove in a very similar way two

propositions about an additive property of the linking number by concatenation of the

paths (Proposition 11.3 and Proposition 11.2 of this section). This additive property will

be used in the next section to prove the two main theorems of this chapter.
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11.4.1 An equivalent definition of the linking number

Definition 11.6 (indirect contribution to the linking number)

Let π = (yk)k=0,...,p and c = (xi)i=0,...,q be two closed paths such that H(π, c) holds. We

define as follows Mc,π(i, k), the indirect contribution to the linking number of a couple

(i, k) where 0 ≤ i ≤ q and 0 ≤ k ≤ p.

• If y3
k > x3

i or P(yk) 6= P(xi) or P(yk) = P(yk−1) or P(xi) = P(xi−1) then Mc,π(i, k) = 0,

• otherwise, let Pπ = Pπ(k) and Pc = Pc(i) be the projective movements associated to the

subscripts i and k:

— If PPred
c = PSucc

c then Mc,π(i, k) = 0,

— otherwise Mc,π(i, k) = M−
c,π(i, k) + M+

c,π(i, k) where

M−
c,π(i, k) = +0.5 if PPred

π ∈ Left(Pc), M+
c,π(i, k) = +0.5 if PSucc

π ∈ Right(Pc),

M−
c,π(i, k) = −0.5 if PPred

π ∈ Right(Pc), M+
c,π(i, k) = −0.5 if PSucc

π ∈ Left(Pc),

M−
c,π(i, k) = 0 otherwise. M+

c,π(i, k) = 0 otherwise.

Lemma 11.1 Let π = (yk)k=0,...,p and c = (xi)i=0,...,q be two closed paths such that H(π, c)

holds. Then Wπ,c(k, i) = Mc,π(i, k).

Proof : The first condition of Definition 11.4 and the one of Definition obn11.6 are

identical. Now, if PPred
π = PSucc

π then Wπ,c(k, i) = 0 but it is then clear that whatever

be the configuration Pc, we have Mc,π(i, k) = 0 since PPred
π and PSucc

π will either both

belong to the same side of Pc or be equal to PPred
c or PSucc

c . Similarly, if PPred
c = PSucc

c

then Wπ,c(k, i) = Mc,π(i, k) = 0.

If PPred
π 6= PSucc

π and PPred
c 6= PSucc

c , we should evaluate Wc,π(i, k) depending on the

positions of the points PPred
c and PSucc

c , which immediately gives the positions of PPred
π

and PSucc
π relative to Pc. In all case we only have to observe that Mc,π(i, k) = Wπ,c(k, i).

Figure 11.9 gives an overview of the fourteen configurations of projective movements

which can occur between an n−path and an n−path. The reader can check that the

direct and indirect contributions of the intersection point are equal. 2

π

c

Figure 11.9: The 14 possible crossing ways in a projective movement.
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Remark 11.1 From Lemma 11.1 we have : Lπ,c =

q−1∑
i=0

p−1∑

k=0

Mc,π(i, k). Furthermore, it is

clear that the linking number is not dependent to the choice of a parameterization for any

of the two paths as soon as the orientation of the considered path is preserved.

11.4.2 The concatenation property

Proposition 11.2 Let π1, π2 be two closed n−paths with the same extremities and c be

a closed n−path such that H(c, π1) and H(c, π2) hold. Then, Lπ1.π2,c = Lπ1,c + Lπ2,c.

Proof : Let c = (x0, . . . , xq), π1 = (z0, . . . , zp1), π2 = (t0, . . . , tp2) and π1.π2 =

(y0, . . . , yp1+p2).

From Definition 11.5, we have to prove that

q−1∑
i=0

Lπ1.π2
π1.π2,c(i) =

q−1∑
i=0

Lπ1
π1,c(i) +

q−1∑
i=0

Lπ2
π2,c(i).

More precisely, it is sufficient to prove that Lπ1.π2
π1.π2,c(i) = Lπ1

π1,c(i) + Lπ2
π2,c(i) for any i ∈

[0, q]. From Definition 11.4, both terms of the previous equality are equal to zero if

P(xi−1) = P(xi) or if P(xi−1) = P(xSuccc(i)). Therefore, we have to investigate the case

when the projective movement P = Pc(i) (see Definition 11.4) is not trivial in the sense

that PPred 6= PSucc.

In this case, we prove that :

p1+p2−1∑

k=0

Mc,π1.π2(i, k) =

p1−1∑

k=0

Mc,π1(i, k) +

p2−1∑

k=0

Mc,π2(i, k).

• If both π1 and π2 are closed paths the projection of which is reduced to a single point,

i.e. P(z0) = P(zk) = P(t0) for any k ∈ [0, p1 − 1] and P(t0) = P(tk) for any k ∈ [0, p2 − 1]

then it is immediate that Lπ1,c = Lπ2,c = Lπ1.π2,c = 0.

• If the path π2 has a projection reduced to a single point (i.e. Succπ2(0) = 0) and π1

has a projection which is not reduced to a single point (i.e. Succπ1(0) 6= 0) then Lπ2,c = 0

and we prove that Lπ1,c = Lπ1.π2,c. Indeed, in this case and for any i ∈ [0, q − 1] :

Lπ1.π2
π1.π2,c(i) =

Succπ1.π2 (0)−1∑

k=0

Mc,π1.π2(i, k) +

Predπ1.π2 (0)−1∑

k=Succπ1.π2 (0)

Mc,π1.π2(i, k)

+

p1+p2−1∑

k=Predπ1.π2 (0)

Mc,π1.π2(i, k)

But from the definition of Succπ1.π2(0) and Predπ1.π2(0) and due to the fact that the

indirect contribution of a couple (k, i) is equal to 0 in the case when P(yk) = P(yk−1) we

obtain that :
p1+p2−1∑

k=Predπ1.π2 (0)

Mc,π1.π2(i, k) +

Succπ1.π2 (0)−1∑

k=0

Mc,π1.π2(i, k) = Mc,π1.π2(Predπ1.π2(0) + 1, k)
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We also observe that : Predπ1.π2(0) = Predπ1(0) ∈]0, p1[ since P(yk) = P(yp1) for k ∈
[p1, p1 + p2]. But yj = zj for all j ∈ [0, . . . , p1] so that yPredπ1.π2 (0) = zPredπ1 (0) and

yPredπ1.π2 (0)+1 = zPredπ1 (0)+1. On the other hand, Succπ1.π2(Predπ1.π2(0)+1) = Succπ1.π2(0)

from the definition of Succ and Pred . But Succπ1.π2(0) ∈]0, p1[, so that Succπ1.π2(0) =

Succπ1(0) = Succπ1(Predπ1(0) + 1). Finally, ySuccπ1.π2(Predπ1.π2 (0)+1) = zSuccπ1 (Predπ1 (0)+1).

From the definition of the contribution to the linking number we obtain :

Mc,π1.π2(i,Predπ1.π2(0) + 1) = Mc,π1(i,Predπ1(0) + 1).

From the definition of Succπ1(0) and Predπ1(0) and the fact that the contribution of a

couple (k, i) is equal to 0 in the case when P(zk) = P(zk−1) we have :

Mc,π1(i,Predπ1(0) + 1) =

p1−1∑

k=Predπ1 (0)+1

Mc,π1(i, k) +

Succπ1(0)−1∑

k=0

Mc,π1(i, k).

Due to the expression of Lπ1.π2
π1.π2,c(i) set above, and due to the fact that the sequence of

voxels of π1 appears in π1.π2 between Succπ1.π2(0) and Predπ1.π2(0) :

Lπ1.π2
π1.π2,c(i) = Mc,π1.π2(Predπ1.π2(0) + 1, k) +

Predπ1.π2 (0)∑

k=Succπ1.π2 (0)

Mc,π1.π2(i, k)

= Mc,π1(Predπ1(0) + 1, k) +

Predπ1 (0)∑

k=Succπ1 (0)

Mc,π1(i, k)

= Lπ1
π1,c(i)

• The case when Succπ1(0) = 0 and Succπ2(0) 6= 0 is similar.

• In the case when none of the paths π1 and π2 has a projection reduced to a single point

(i.e. Succπ1(0) 6= 0 and Succπ2(0) 6= 0).

Then, following the same considerations as in the previous case we show that :

Lπ1
π1,c(i) = Mc,π1(i,Predπ1(0) + 1) +

Predπ1(0)∑

k=Succπ1 (0)

Mc,π1(i, k) (2.1)

Lπ2
π2,c(i) = Mc,π2(i,Predπ2(0) + 1) +

Predπ2(0)∑

k=Succπ2 (0)

Mc,π2(i, k) (2.2)

Lπ1.π2
π1.π2,c(i) = Mc,π1.π2(i,Predπ1.π2(0) + 1) +

Predπ1.π2 (p1)∑

k=Succπ1.π2 (0)

Mc,π1.π2(i, k) (2.3)

+ Mc,π1.π2(i,Predπ1.π2(p1) + 1) +

Predπ1.π2(0)∑

k=Succπ1.π2 (p1)

Mc,π1.π2(i, k)
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For k ∈ [Succπ1(0),Predπ1(0)] = [Succπ1.π2(0),Predπ1.π2(p1)] ⊂]0, p1[ we have zk = yk,

zk−1 = yk−1 and zSuccπ1 (k) = ySuccπ1.π2 (k), so Mc,π1(i, k) = Mc,π1.π2(i, k). So the sum in

equation (2.1) is equal to the first sum in equation (2.3).

For k ∈ [Succπ2(0),Predπ2(0)] = [Succπ1.π2(p1)−p1,Predπ1.π2(0)−p1] ⊂]0, p2[ we have tk =

yk+p1 , tk−1 = yk+p1−1 and tSuccπ1 (k) = ySuccπ1.π2(k)+p1 , so Mc,π2(i, k) = Wc,π1.π2(i, k + p1).

Then, the sum in equation (2.2) is equal to the second sum in equation (2.3).

There remains to prove the equality Mc,π1(i,Predπ1(0) + 1) + Mc,π2(i,Predπ2(0) + 1) =

Mc,π1.π2(i,Predπ1.π2(0) + 1) + Mc,π1.π2(i,Predπ1.π2(p1) + 1). But,

M−
c,π1

(i,Predπ1(0) + 1) = M−
c,π1.π2

(i,Predπ1.π2(p1) + 1) since zPredπ1 (0) = yPredπ1.π2 (p1).

M+
c,π1

(i,Predπ1(0)+1) = M+
c,π1.π2

(i,Predπ1.π2(0)+1) since zSuccπ1 (Predπ1 (0)+1) = zSuccπ1 (0) =

ySuccπ1.π2 (0) = ySuccπ1.π2(Predπ1.π2 (0)+1).

M−
c,π2

(i,Predπ2(0) + 1) = M−
c,π1.π2

(i,Predπ1.π2(0) + 1) since tPredπ2 (0) = yPredπ1.π2 (0).

M+
c,π2

(i,Predπ2(0)+1) = M+
c,π1.π2

(i,Predπ1.π2(p1)+1) since tSuccπ2 (Predπ2(0)+1) = tSuccπ2 (0) =

tSuccπ1.π2 (p1) = tSuccπ1.π2 (Predπ1.π2 (p1)+1).

Finally, Mc,π1(i,Predπ1(0) + 1) + Mc,π2(i,Predπ2(0) + 1) = Mc,π1.π2(i,Predπ1.π2(0) + 1) +

Mc,π1.π2(i,Predπ1.π2(p1) + 1). 2

Proposition 11.3 Let c1 and c2 be two closed paths with the same extremity and π be a

closed path such that H(c1, π) and H(c1, π) hold. Then, Lπ,c1.c2 = Lπ,c1 + Lπ,c2.

Proof : Let π = (y0, . . . , yp), c1 = (z0, . . . , zq1), c2 = (t0, . . . , tq2) and c1.c2 = (x0, . . . , xq1+q2).

We prove that

p−1∑

k=0

Lc1.c2
π,c1.c2

(k) =

p−1∑

k=0

Lc1
π,c1

(k) +

p−1∑

k=0

Lc2
π,c2

(k).

More precisely we show that for any k ∈ [0, p− 1] we have :

Lc1.c2
π,c1.c2(k) = Lc1

π,c1
(k) + Lc2

π,c2
(k).

From the definition of the direct contribution of a couple (k, i) to the linking number,

both terms of the previous equality are equal to zero if P(yk−1) = P(yk) or if P(yk−1) =

P(ySuccπ(k)). Therefore, we have to investigate the case when the projective movement

P = Pπ(k) (see Definition 11.4) is not trivial in the sense that PPred 6= PSucc.

In this case, we prove that :
q1+q2−1∑

i=0

Wπ,c1.c2(k, i) =

q1−1∑
i=0

Wπ,c1(k, i) +

q2−1∑
i=0

Wπ,c2(k, i)

• In the case when both c1 and c2 are closed paths the projection of which is reduced to

a single point, i.e. P(z0) = P(zi) for any i ∈ [0, q1] and P(t0) = P(ti) for any i ∈ [0, q2]
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then it is immediate that Lπ,c1 = Lπ,c2 = Lπ,c1.c2 = 0.

• In the case when the curve c2 has a projection reduced to a single point (i.e. Succc2(0) =

0 and c1 has a projection which is not reduced to a single point (i.e. Succc1(0) 6= 0). Then,

Lπ,c1 = 0 and we prove that Lπ,c2 = Lπ,c1.c2 .

Indeed, in this case :

Lπ,c1.c2 =

Succc1.c2 (0)−1∑
i=0

Wπ,c1.c2(k, i) +

Predc1.c2 (0)∑

i=Succc1.c2 (0)

Wπ,c1.c2(k, i) +

q1+q2−1∑

i=Predc1.c2(0)

Wπ,c1.c2(k, i).

But from the definition of Succc1.c2(0) and Pred c1.c2(0); from the definition of the contri-

bution of a couple (k, i) in the case when P(xi) = P(xi−1) we obtain that
q1+q2−1∑

i=Predc1.c2 (0)

Wπ,c1.c2(k, i) +

Succc1.c2(0)−1∑
i=0

Wπ,c1.c2(k, i) = Lπ,c1.c2(k,Pred c1.c2(0) + 1).

We also observe that : Pred c1.c2(0) = Pred c1(0) ∈]0, q1[ since P(xj) = P(xq1) for j =

q1, . . . , q1 + q2. But xj = zj for all j ∈ [0, ldots, q1] so :

– xPredc1.c2 (0) = zPredc1(0) and xPredc1.c2(0)+1 = zPredc1(0)+1.

On the other hand, Succc1.c2(Pred c1.c2(0) + 1) = Succc1.c2(0) from the definition of Succ

and Pred . But Succc1.c2(0) ∈]0, q1[, so Succc1.c2(0) = Succc1(0) = Succc1(Pred c1(0) + 1).

Finally,

– xSuccc1.c2 (Predc1.c2 (0)+1) = zSuccc1 (Predc1 (0)+1).

From the definition of the contribution to the linking number we obtain that

Lπ,c1.c2(k,Pred c1.c2(0) + 1) = Lπ,c1(k,Pred c1(0) + 1). And from the definition of Succc1(0)

and Pred c1(0) and the contribution of a couple (k, i) in the case when P(zi) = P(ti−1) we

have :

Lπ,c1(k,Pred c1(0) + 1) =

q1−1∑

i=Predc1 (0)

Wπ,c1(k, i) +

Succc1 (0)−1∑
i=0

Wπ,c1(k, i).

Let us compute the sum

Predc1.c2 (0)∑

i=Succc1.c2 (0)

Wπ,c1.c2(k, i).

For i ∈ [Succc1.c2(0),Pred c1.c2(0)] = [Succc1(0), Succc1(0)] ⊂]0, q1[ we have : xi = zi,

xi−1 = zi−1 and Succc1.c2(i) ≤ Pred c1.c2(0) + 1 = Pred c1(0) + 1 ≤ q1 so that xSuccc1.c2(i) =

zSuccc1 (i). This implies that Wπ,c1.c2(k, i) = Wπ,c1(k, i) so
Predc1.c2 (0)∑

i=Succc1.c2 (0)

Wπ,c1.c2(k, i) =

Predc1(0)∑

i=Succc1(0)

Wπ,c1(k, i).

We obtain that :

Lπ,c1.c2 =

q1−1∑

i=Predc1(0)

Wπ,c1(k, i) +

Succc1(0)−1∑
i=0

Wπ,c1(k, i) +

Predc1 (0)∑

i=Succc1 (0)

Wπ,c1(k, i) = Lπ,c1 .
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• The case when Succc1(0) = 0 and Succc2(0) 6= 0 can be proved by a very similar way

with heavy notations in order to shift the subscripts of identical voxels of c2 and c1.c2.

• In the case when no one of the paths c1 and c2 has a projection reduced to a single

point (i.e. Succc1(0) 6= 0 and Succc2(0) 6= 0).

Then, following the same considerations as in the previous case we show that :

Lc1
π,c1

(k) = Lπ,c1(k,Pred c1(0) + 1) +

Predc1 (0)∑

i=Succc1 (0)

Wπ,c1(k, i)

Lc2
π,c2

(k) = Lπ,c2(k,Pred c2(0) + 1) +

Predc2 (0)∑

i=Succc2 (0)

Wπ,c2(k, i)

Lc1.c2
π,c1.c2

(k) = Lπ,c1.c2(k,Pred c1.c2(0) + 1) +

Predc1.c2(q1)∑

i=Succc1.c2 (0)

Wπ,c1.c2(k, i)

+ Lπ,c1.c2(k,Pred c1.c2(q1) + 1) +

Predc1.c2 (0)∑

i=Succc1.c2 (q1)

Wπ,c1.c2(k, i)

For i ∈ [Succc1(0),Pred c1(0)] = [Succc1.c2(0),Pred c1.c2(q1)] ⊂]0, q1[ we have zi = xi, zi−1 =

xi−1 and zSuccc1 (i) = xSuccc1.c2 (i), so Lπ,c1(k, i) = Lπ,c1.c2(k, i). Then,
Predc1 (0)∑

i=Succc1 (0)

Wπ,c1(k, i) =

Predc1.c2 (q1)∑

i=Succc1.c2 (0)

Wπ,c1.c2(k, i).

For i ∈ [Succc2(0),Pred c2(0)] = [Succc1.c2(q1) − q1,Pred c1.c2(0) − q1] ⊂]0, q2[ we have

ti = xi+q1 , ti−1 = xi+q1−1 and tSuccc1 (i) = xSuccc1.c2 (i)+q1 , so Lπ,c2(k, i) = Lπ,c1.c2(k, i + q1).

Then,

Predc2 (0)∑

i=Succc2(0)

Wπ,c2(k, i) =

Predc1.c2 (0)∑

i=Succc1.c2 (q1)

Wπ,c1.c2(k, i).

On the other hand, Lπ,c1(k,Pred c1(0) + 1) + Lπ,c2(k,Pred c2(0) + 1) = L−π,c1
(k,Pred c1(0) +

1) + L+
π,c1

(k,Pred c1(0) + 1) + L−π,c2
(k,Pred c2(0) + 1) + L+

π,c2
(k,Pred c2(0) + 1).

But,

L−π,c1
(k,Pred c1(0) + 1) = L−π,c1.c2

(k,Pred c1.c2(q1) + 1) since zPredc1(0) = xPredc1.c2 (q1).

L+
π,c1

(k,Pred c1(0) + 1) = L+
π,c1.c2

(k,Pred c1.c2(0) + 1) since zSuccc1 (Predc1 (0)+1) = zSuccc1 (0) =

xSuccc1.c2 (0) = xSuccc1.c2 (Predc1.c2 (0)+1).

L−π,c2
(k,Pred c2(0) + 1) = L−π,c1.c2

(k,Pred c1.c2(0) + 1) since tPredc2 (0) = xPredc1.c2 (0).

L+
π,c2

(k,Pred c2(0) + 1) = L+
π,c1.c2

(k,Pred c1.c2(q1) + 1) since tSuccc2 (Predc2 (0)+1) = tSuccc2 (0) =

tSuccc1.c2 (q1) = tSuccc1.c2(Predc1.c2 (q1)+1).

Finally, Lπ,c1(k,Pred c1(0) + 1) + Lπ,c2(k,Pred c2(0) + 1) = Lπ,c1.c2(k,Pred c1.c2(0) + 1) +

Lπ,c1.c2(k,Pred c1.c2(q1) + 1).
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Then,

Lc1
π,c1

(k) + Lc2
π,c2

(k) = Lπ,c1.c2(k,Pred c1.c2(0) + 1) + Lπ,c1.c2(k,Pred c1.c2(q1) + 1)

+

Predc1.c2(q1)∑

i=Succc1.c2 (0)

Wπ,c1.c2(k, i) +

Predc1.c2 (0)∑

i=Succc1.c2 (q1)

Wπ,c1.c2(k, i)

= Lc1.c2
π,c1.c2

(k)

2

11.5 Proofs of the main theorems

11.5.1 Independence up to a deformation of the 6/(6+)−path

In this section we will prove Theorem 14 in the case when (n, n) ∈ {(6+, 18), (6, 26)}.
The main idea of the proof is that a homotopic deformation of 6−paths or (6+)−paths

can be achieved by insertion/deletion of simple closed loops included in a cube or a square

(like depicted in Figure 11.10). Then, proving that such small n−paths have a linking

number of 0 with any other n−path will be sufficient to prove the main theorem by using

Proposition 11.2.

Definition 11.7 Let π and π′ be two closed n−paths (n ∈ {6, 6+, 18, 26}) in X ⊂ Z3.

We say that π and π′ are the same up to a simple n−loop insertion/deletion if π =

π1.(p).π2 where p is a voxel, and π′ = π1.γ.π2 where γ is a simple closed n−path from

p to p included in a 2×2×2 cube (a 2×2 square if (n, n) = (6, 26)); or if π = π1.γ.π2 and

π′ = π1.(p).π2.

Proposition 11.4 Let π and π′ be two n−paths (n ∈ {6, 6+, 18, 26}) of X ⊂ Z3. Then

the two following properties are equivalent :

i) π is n−homotopic to π′.

ii) There exists a sequence S = (π0, . . . , πl) such that π0 = π, πl = π′ and for

h = 1 . . . l, the two paths πh−1 and πh are the same up to a simple n−loop in-

sertion/deletion

In case ii) is satisfied, we denote π ≡SL π′.
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Proof :

ii) ⇒ i) is obvious from the definitions since a simple n−loop insertion/deletion is a kind

of elementary n−deformation. Conversely, it is sufficient to prove ii) assuming that π

and π′ are the same up to an elementary n−deformation. So, suppose that π = π1.γ.π2

and π′ = π1.γ
′.π2. Where γ and γ′ have the same extremities (say p and q) and are

included in a 2×2×2 cube C (a 2×2 square if (n, n) = (6, 26)).

We give the sequence S : First, by inserting or deleting simple loops of the form (x, y, x)

in π we get : π = π1.γ.π2 ≡SL π1.γ.γ′−1.γ′.π2. Now, consider the closed path γ.γ′−1

from p to p. One can sequentially remove minimal sub-paths of the loop γ.γ′−1 which

are simple loops until the resulting path is itself a simple loop and can be fully removed.

Finally, π ≡SL π1.γ.γ′−1.γ′.π2 ≡SL π1.γ
′.π2 = π′. 2

(g)

(h)

(i)

(a) (d)

(e)(b)

(c) (f)

p

Figure 11.10: The 24 closed 6−loops from p in a 2×2×2

cube.

d

a b

f

g

c

h

e

Figure 11.11: How to obtain a

kind of simple 6−loop by inser-

tion/deletion of simpler ones.

Lemma 11.5 Let π be a simple 6−loop included in a 2×2 square and c be a 26−path

such that H(π, c) holds, then Lπ,c = 0.

Proof : From Figure 11.10(a) to Figure 11.10(f), all the possible simple 6−loops included

in a 2×2 square from a given point p to p are depicted up to a choice of an orientation.

In this proof, we will only investigate the cases of simple loops from a fixed given point

p. By changing the parameterization of the loop, it is clear that the proof is similar for

the 3 other positions of the voxel p in a 2×2 square.

– Cases of the Figures 11.10(a) and 11.10(b) : In this case, π = (x, y, x) and Lπ,c =

Lc
π,c(0) + Lc

π,c(1) = 0 from the very definition of the contribution to the linking number.
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– Case of Figure 11.10(c) : In this case, π = (x, y, x) and P(x) = P(y) so it is clear that

Lπ,c = 0.

– Cases of the Figures 11.10(d) and 11.10(e) :

Let π = (y0, y1, y2, y3, y4 = y0). In both cases and for any choice of a parameterization,

one can easily check that Lc
π,c(k) = 0 for k = 0, . . . , 3 either because P(yk) = P(yk−1) or

because Pπ(k)Pred = Pπ(k)Succ.

– Case of Figure 11.10(f) :

We set c = (xi)i=0,...,q, π = (y0, y1, y2, y3, y4 = y0), P = {P(y0),P(y1), P(y2),P(y3)} and

let I = {[i1, i2]| P(xi1−1) /∈ P , P(xi2+1) /∈ P and P(xi) ∈ P for all i ∈ [i1, i2]}. In the case

when P(xi) ∈ P for all i ∈ [0, q] then I = {[0, q − 1]}.

Then, it is clear that Lπ,c =
∑

[i1,i2]∈I

i2∑
i=i1

Lπ
π,c(i).

It is sufficient to prove that for any [i1, i2] ∈ I the sum

i2∑
i=i1

Lπ
π,c(i) is equal to 0. One

can choose an orientation for the path π but in all cases we observe that for all i ∈
[i1, i2] there exists a single subscript k(i) ∈ {0, 1, 2, 3} such that Lπ

π,c(i) = Wπ,c(k(i), i).

First, for a given interval [i1, i2], either x3
i < y3

k(i) for all i ∈ [i1, i2] or x3
i > y3

k(i) for all

i ∈ [i1, i2]. In the first case, Lπ
π,c(i) = 0 for all i ∈ [i1, i2] and there is nothing else to

prove. In the second case one can consider some a0 < a1 < . . . < al ≤ al+1 such that :

[i1, i2] = [a0, a1[∪[a1, a2[∪ . . .∪ [al, al+1], with P(xai
) 6= P(xai−1

) for any i ∈ {1, . . . , l}; and

∀i ∈ {0, . . . , l}, ∀j ∈ [ai, ai+1[ we have P(xj) = P(xai
). Then, for any i ∈ {0, . . . , l − 1}

we have :
ai+1−1∑
j=ai

Wπ,c(k(j), j) = Wπ,c(k(ai), ai) and

al+1∑
j=al

Wπ,c(k(j), j) = Wπ,c(k(al), al).

By construction of the intervals [ai, ai+1[, we have :
∑

i∈[i1,i2]

Wπ,c(k(i), i) =
∑

i=1,...,l

Wπ,c(k(ai), ai).

Now, we prove that for i = 1, . . . , l, W+
π,c(k(ai), ai) + W−

π,c(k(ai+1), ai+1) = 0. Indeed,

let βi = Pc(ai) and αi = Pπ(k(ai)). Then W+
π,c(k(ai), ai) depends on the position of

the point βSucc
i with respect to the projective movement αi. If βSucc

i ∈ {αPred , αSucc}
then we have W+

π,c(k(ai), ai) = 0 and W−
π,c(k(ai+1), ai+1) = 0 since Pred c(ai+1) = ai. If

βSucc
i /∈ {αPred , αSucc} then βSucc is a point which is 8−adjacent but not 4−adjacent to

(0, 0). But in this case, and depending on the orientation of the loop π, if βSucc
i ∈ Right(αi)

then βPred
i+1 ∈ Right(αi+1) and if βSucc

i ∈ Left(αi) then βPred
i+1 ∈ Left(αi+1).
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We also see that W−
π,c(k(a0), a0) + W+

π,c(k(al), al) = 0. Indeed, up to a choice of an

orientation for the loop reduced to a 2×2 square, it is clear that the projections of the

voxels Pc(a0)
Pred and Pc(al)

Succ will both belong either respectively to Right(Pπ(k(a0)))

and Right(Pπ(k(al))) or to Left(Pπ(k(a0))) and Left(Pπ(k(al))). In the case when I =

{[0, q− 1]} then W−
π,c(k(a0), a0) + W+

π,c(k(al), al) = 0 either because both terms are equal

to 0 or for the same reason as explained above for the intervals [ai, ai+1[ (contributions

with opposite signs).

Finally, for any [i1, i2] ∈ I,

i2∑
i=i1

Lπ
π,c(i) =

l∑
i=1

(
W−

π,c(k(ai), ai) + W+
π,c(k(ai), ai)

)

= W−
π,c(k(a1), a1) + W+

π,c(k(al), al) +
l∑

i=1

(
W+

π,c(k(ai), ai)W
−
π,c(k(ai+1), ai+1)

)

= 0

2

Lemma 11.6 If π is a simple (6+)−loop included in a 2×2×2 cube and c is a closed

18−path such that H(π, c) holds, then Lπ,c = 0.

Proof : In Figure 11.10 are depicted up to a choice of a parameterization and for a

given point p all the simple loops in a 2×2×2 cube from p to p (the proof when p is any

one of the 7 other voxels in the cube is similar).

In this proof we only have to show that Lπ,c = 0 when π is one of the loops (a) . . . (i).

Then, using Proposition 11.2 and the fact that any other loop of Figure 11.10 can be

obtained by insertion/deletion of loops (a) . . . (i) we will achieve to prove that Lπ,c = 0

when π is any of the loops of Figure 11.10.

In the proof of Lemma 11.5, we have already proved that Lπ,c = 0 when π is one of the

loops of figures (a), (b), (c), (d), (e) and (f) (indeed, c, as an 18−path, is also a 26−path).

– Cases of the Figures 11.10(g), (h) and (i) :

The proof in these cases is similar to the case of Figure 11.10(f) (see Proof of Propo-

sition 11.5). Thus, we still observe the existence of an integer k(i) such that Lπ
π,c(i) =

Wπ,c(k(i), i). Indeed, only one of any two voxels of π which have the same projection may

have a non zero contribution. We also still use the fact that for a given interval [i1, i2] ∈ I
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(as defined in the previous case), either x3
i < y3

k(i) for all i ∈ [i1, i2] or x3
i > y3

k(i) for all

i ∈ [i1, i2]. Indeed, this comes from the fact that the two points of the cube which are

not points of π are not 18−adjacent, so that the path c cannot have intersection intervals

with voxels in the two sides of π according to their third coordinates. The end of the

proof is similar.

– Other cases : Now, if π is a simple closed loop in C such that Lπ,c = 0 and π′ is

a simple loop in C obtained by the insertion of any of the loops (a), . . . , (i) in π, then

Lπ,c = Lπ′,c = 0. Indeed, if π = π1.(x).π2 and π′ = π1.γ.π2 where γ is a loop from x to

x of some form in (a), . . . , (i), then Lπ1.γ.π2,c = Lπ2.π1.γ,c because the linking number is

invariant under any orientation preserving change of parameterization. Furthermore, from

Proposition 11.2 we have Lπ2.π1.γ,c = Lπ2.π1,c + Lγ,c. Since we have proved that Lγ,c = 0

when γ is of type (a), . . . , (i) then Lπ2.π1.γ,c = Lπ2.π1,c and again we have Lπ2.π1,c = Lπ1.π2,c.

Finally, Lπ′,c = Lπ,c.

Now, it is left to the reader to check that any of the 15 other simple loops can be obtained

by a sequence of insertions or deletions of loops like (a), . . . , (i). Then, we obtain that

Lπ,c = 0 when π is any kind of loop depicted in Figure 11.10.

As an example, we only give here the sequence of simple loops insertion/deletion of the

kind (a) . . . (i) which leads from the path reduced to the voxel a to the path depicted in

Figure 11.11.

(a, d, c, b, a) can be obtained from (a) by insertion of a loop like Figure 11.10(f).

(a, d, h, g, c, d, c, b, a) can be obtained from (a, d, c, b, a) by insertion of a loop like Fig-

ure 11.10(e).

(a, d, h, g, c, b, a) can be obtained from (a, d, h, g, c, d, c, b, a) by deletion of a loop like Fig-

ure 11.10(b).

(a, d, h, g, c, b, f, e, a, b, a) can be obtained from (a, d, h, g, c, b, a) by insertion of a loop like

Figure 11.10(e).

(a, d, h, g, c, b, f, e, a) can be obtained from (a, d, h, g, c, b, f, e, a, b, a) by deletion of a loop

like Figure 11.10(b). 2

Proof of Theorem 14 : From Proposition 11.4 it is sufficient to prove Theorem 14 in the

case when π and π′ are the same up to a simple n−loop insertion/deletion (n ∈ {6, 6+}).
In this case, let us suppose that π = π1.(x).π2 and π′ = π1.γ.π2 where γ is a simple loop

from x to x included in a 2×2×2 cube C (in a 2×2 square if (n, n) = (6, 26)). Since the
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linking number is invariant under any order preserving change of parameterization, we

have Lπ′,c = Lπ1.γ.π2,c = Lγ.π2.π1,c. From Proposition 11.2, Lγ.π2.π1,c = Lγ,c +Lπ2.π1,c (π2.π1

is a closed n−path from x to x as well as γ). Now, since γ is a simple loop in C and from

Lemma 11.5 or Lemma 11.6 we have Lγ,c = 0. Finally, Lγ.π2.π1,c = Lπ2.π1,c = Lπ1.π2,c =

Lπ,c. 2

11.5.2 Independence up to a deformation of the 26−path

Definition 11.8 Let c and c′ be two 26−paths in X ⊂ Z3. We say that c and c′ are the

same up to a triangle or a back and forth insertion if :

– Either c = c1.(x).c2 and c′ = c1.(x, y, z, x).c2 where the voxels x, y and z are included

in a 2×2×2 cube C,
– or c = c1.(x).c2 and c′ = c1.(x, y, x).c2.

We say that c and c′ are the same up to a triangle or a back and forth insertion/deletion

if either c and c′ or c′ and c are the same up to a triangle or a back and forth insertion.

Proposition 11.7 Let c and c′ be two 26−paths in X ⊂ Z3. Then the two following

properties are equivalent :

i) c is 26−homotopic to c′ in X.

ii) There exists a sequence S = (c0 = c, . . . , ck = c′) of paths in X such that for all

i ∈ [1, k[ the paths ci−1 and ci are the same up to a triangle or back and forth

insertion/deletion.

If ii) is satisfied, we denote c ≡TBF c′.

Proof : ii) ⇒ i′) is obvious since a triangle or back and forth insertion is a particular

case of elementary 26−deformation.

i′) ⇒ ii) Conversely, from Definition 2.11, it is sufficient to prove ii) if c and c′ are the

same up to an elementary deformation. We suppose that c = c1.γ.c2 and c′ = c1.γ
′.c2

where γ and γ′ have the same extremities and are included in a 2×2×2 cube C. By an

induction on the length of γ we show that there exists a sequence of triangles or back

and forth insertions/deletions which leads from γ to the path reduced to its extremities.

Suppose that γ = γ0 has a length l ≥ 2. Then we have γ0 = γ0
1 .(x, y, z).γ0

2 . Now, by a back

and forth insertion we can obtain the path γ0
1 .(x, y, z).(z, x, z).γ0

2 = γ0
1 .(x, y, z, x, z).γ0

2 and
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then by a triangle deletion we obtain the path γ0
1 .(x, z).γ0

2 = γ1 which has a length of

l− 1 < l. By induction, we can obtain a path γk = (p, q) with a length of 1 where p and

q are the common extremities of γ and γ′.

By the same way we can obtain the path γ′ from the path (p, q) by a sequence of triangle

insertions and back and forth deletions. Finally, any elementary 26−deformation can be

done by a sequence of triangle or back and forth insertions/deletions. 2

Lemma 11.8 If c is a 26−triangle, then for any 6−path π such that H(π, c) holds we

have Lπ,c = 0.

Proof : Let c be a 26−triangle. We first consider the case when exactly two voxels

of c have the same projection (the case when all the voxels have the same projection

immediately implies that Lπ,c = 0).

We suppose that two voxels of c = (x0, x1, x2, x0) have the same projection. Without

loss of generality, we suppose that P(x1) = P(x2). Now, for any 6−path π we have

Lπ,c = Lπ
π,c(0) + Lπ

π,c(1) + Lπ
π,c(2). But from Definition 11.4 we have Lπ

π,c(0) = 0 since

Succc(0) = 1 and Pred c(0) = 2 and P(x1) = P(x2). We also have Lπ
π,c(1) = 0 since

Succc(1) = Pred c(1) = 0. Finally, Lπ
π,c(2) = 0 since P(x1) = P(x2).

Now, we assume that the three voxels of c have pairwise distinct projections.

Let c = (x0, x1, x2, x3 = x0) and π = (yk)k=0,...,p. Let P = {P(x0), P(x1),P(x2)} and

K = {[k1, k2]| P(yk1−1) /∈ P , P(yk2+1) /∈ P and P(yi) ∈ P for all i ∈ [k1, k2]}. If P(yk) ∈ P

for all k ∈ [0, p] then K = {[0, p− 1]}. It is clear that Lπ,c =
∑

[k1,k2]∈K

k2∑

k=k1

Lc
π,c(k).

For any [k1, k2] ∈ K and any k ∈ [k1, k2] we denote by i(k) the only subscript of voxels of

c such that P(xi(k)) = P(yk). Then, for any such k, we have Lc
π,c(k) = Wπ,c(k, i(k)). So,

Lπ,c =
∑

[k1,k2]∈K

k2∑

k=k1

Wπ,c(k, i(k)).

Now, from the definition of the contribution to the linking number, it is clear that for

any [k1, k2] ∈ K :

k2∑

k=k1

Wπ,c(k, i(k)) =

Predπ(k2)+1∑

k=k1

Wπ,c(k, i(k)).

But for k ∈ [k1 + 1,Predπ(k2)], the contribution Wπ,c(k, i(k)) is equal to 0 either because

{Pπ(k)Pred , Pπ(k)Succ} ⊂ {Pc(i(k))Pred , Pc(i(k))Succ} or because P(yk) = P(yk−1).

Similarly, we observe that W+
π,c(k1, i(k1)) = W−

π,c(Predπ(k2) + 1, i(Predπ(k2) + 1)) = 0.

On the other hand, W−
π,c(k1, i(k1)) + W+

π,c(Predπ(k2) + 1, i(Predπ(k2) + 1)) = 0. In-

deed, depending on a choice of an orientation for the triangle c, it is clear that the
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projections of the voxels Pπ(a1)
Pred and Pπ(Predπ(k2) + 1)Succ will either belong re-

spectively to Right(Pc(i(a1))) and Right(Pc(i(Predπ(k2) + 1))) or belong respectively to

Left(Pc(i(a1))) and Left(Pc(i(Predπ(k2) + 1))). If K = {[0, p − 1]} then W−
π,c(0, i(0)) =

W+
π,c(Predπ(p) + 1, i(Predπ(p) + 1)) = 0 from the definition of Wπ,c(k, i). Thus,

k2∑

k=k1

Wπ,c(k, i(k)) = Wπ,c(k1, i(k1)) +

Predπ(k2)∑

k=k1+1

Wπ,c(k, ik))

+Wπ,c(Predπ(k2) + 1, i(Predπ(k2) + 1)) = 0

and finally Lπ,c = 0. 2

Proof of Theorem 15 in the case (6, 26) : The proof is similar to the proof of

Theorem 14 using Proposition 11.7 instead of Proposition 11.4 and Proposition 11.3

instead of Proposition 11.2. Lemma 11.8 shows that Lπ,γ = 0 when γ is a 26−triangle.

The case when γ is a back and forth is obvious and we also have Lπ,γ = 0 in this case. 2

11.5.3 Independence up to a deformation of the 18−path

Definition 11.9 Let c and c′ be two closed 18−paths in X ⊂ Z3. We say that c and c′

are the same up to a triangle, back and forth or square insertion respectively if :

– c = c1.(x).c2 and c′ = c1.(x, y, z, x).c2 where the voxels x, y and z are included in a

2×2×2 cube C,
– c = c1.(x).c2 and c′ = c1.(x, y, x).c2,

– c = c1.(x).c2 and c′ = c1.γ.c2 where γ is one of the closed paths depicted in Figure 11.13

(up to a parameterization).

We say that c and c′ are the same up to a triangle, back and forth or square inser-

tion/deletion if either c and c′ or c′ and c are the same up to a triangle, back and forth

or square insertion.

Proposition 11.9 Let c and c′ be two closed 18−paths in X ⊂ Z3. Then the two follow-

ing properties are equivalent :

i) c is 18−homotopic to c′ in X.

ii) There exists a sequence S = (c0, . . . , ck) of paths in X with c0 = c and ck = c′, such

that for all i ∈ [1, k], the paths ci−1 and ci are the same up to a triangle, back and

forth or square insertion/deletion.
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In case ii) is satisfied we denote c ≡TBS c′.

Proof : i) ⇐ ii) is obvious since the insertion/deletion of a back and forth, a triangle

or a square is a particular case of elementary 18−deformation.

i) ⇒ ii) Conversely, from Proposition 11.4, if c′ and c are 18−homotopic, then there

exists a sequence of simple 18−loops insertion/deletion which leads from c to c′. We

prove that each step of simple 18−loop insertion/deletion can be achieved by a sequence

of back and forth, triangle or square insertions/deletions.

Let γ be a simple 18−loop in a 2×2×2 cube. By an induction on the length of γ, we show

that γ can be reduced to a single voxel by a sequence of back and forth, triangle or square

insertions/deletions. This will indeed prove that any simple 18−loop can be obtained by

a sequence of insertion/deletion of back and forth, squares or triangles in a path reduced

to a single voxel. Note that each step of this sequence only involves voxels of the loop γ

so that the intermediate paths do belong to X.

Let γ = γ0 be any simple closed 18−loop, then given γk we must distinguish several

cases :

• γk is reduced to a single voxel, there is nothing to prove in this case.

• If γk has a length 2, say γk = (x, y, x), then γk+1 = (x) can be obtained by a back and

forth deletion.

• If γk has a length 3, say γk = (x, y, z, x), then γk+1 = (x) can be obtained by a triangle

deletion.

• If γk has a length l > 3, then we distinguish two cases :

– If there exists x, y and z in γk such that γk = γk
1 .(x, y, z).γk

2 where x is 18−adjacent to

z. In this case, the path γk
1 .(x, y, z).(z, x, z).γk

2 = γk
1 .(x, y, z, x, z).γk

2 can be obtained by a

back and forth insertion and then the path γk+1 = γk
1 .(x, z).γk

2 is obtained by a triangle

deletion. The path γk+1 has a length equal to l − 1.

– If there exists no subsequence (x, y, z) in γk such that x is 18−adjacent to z. Then, in

this case we prove that γ is a 18−square (i.e. one of the loops of Figure 11.13). Indeed,

we have depicted in Figure 11.12 a 2×2×2 cube. Suppose that γ has a length l > 3 and no

triangle. Let us consider any two consecutive voxels of γ; up to a rotation these two voxels

may have the configuration of the couple (a, b) or (a, h) of Figure 11.12. First, suppose

that the two consecutive voxels have the same configuration as a and b in Figure 11.12

and try to extend this part of a simple 18−loop taking care not to add a voxel which
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would be 18−adjacent to the predecessor of its predecessor. Then, the only kind of loop

you can obtain is the loop depicted in Figure 11.13(b). By the same way, trying to

extend the sequence (a, h) into a simple 18−loop will also lead to the path depicted in

Figure 11.13(b). Finally, γk is a square which obviously can be removed by a square

deletion in order to obtain a path γk+1 reduced to a single voxel.

In all cases, we can obtain a path γk+1 with a length either lower than l or equal to 1 by

insertion/deletion of back and forth, triangles or squares. By induction, it is clear that

there must exist an integer h such that γh is reduced to a single voxel. Then, any simple

18−loop can be inserted of removed in a closed 18−path by a sequence of triangles, back

and forth or squares insertions/deletions. This achieve to prove that i) ⇒ ii).

c

a b

f

gh

d

e

Figure 11.12: A 2×2×2 cube.

(a) (b) (c) (d) (e) (f)3

1

2

Figure 11.13: Possible simple 18−loops with no tri-

angle in a 2×2×2 cube.

2

Lemma 11.10 If c is a 18−square and π is a closed (6+)−path such that H(π, c) holds,

then Lπ,c = 0.

Proof : Let c = (x0, x1, x2, x3, x0).

– Case of a square of the kind depicted in Figure 11.13(a) and Figure 11.13(b).

In this case, we have Lπ,c = Lπ
π,c(0) + Lπ

π,c(1) + Lπ
π,c(2) + Lπ

π,c(3) but for i ∈ {0, 1, 2, 3}
Lπ

π,c(i) = 0 either since P(xi) = P(xi−1) or since Pc(i)
Pred = Pc(i)

Succ.

– Case of a square of the kind depicted in Figures 11.13(c), 11.13(d), 11.13(e) and 11.13(f).

The proof of the lemma in these cases is similar to the case of Figure 11.10(f) in the proof

of Lemma 11.5 but a little less tricky since the case when two consecutive voxels of π

have 8−adjacent projections which are not 4−adjacent cannot occur since c is a 6−path

or a (6+)−path. Note that, with respect to Lemma 11.5, we must use Mc,π here, instead

of Wπ,c as in Lemma 11.5. 2
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Proof of Theorem 15 in the case (6, 18) : Again, the proof is similar to the proof

of Theorem 14 using Proposition 11.9 instead of Proposition 11.4 and Proposition 11.3

instead of Proposition 11.2. Lemma 11.8 shows that Lπ,γ = 0 when γ is a 18−triangle

(which is also a 26−triangle). The case when γ is a back and forth is obvious and we also

have Lπ,γ = 0. Finally, Lemma 11.10 is used to prove that Lπ,γ = 0 when γ is a square.

2



Chapter 12

A concise characterization of 3D

simple points

This chapter will state the main result of this part which is that a not less restrictive

criterion for topology preservation is obtained using the only conditions i), ii) and iii)

of Definition 10.5. In other words, we will prove the following theorem which states an

equivalent definition to Definition 10.5. In this chapter, (n, n) ∈ {(26, 6), (6, 26)}.

Theorem 16 Let X ⊂ Z3 and x ∈ X. The voxel x is n−simple for n ∈ {6, 26} if :

i) X and X \ {x} have the same number of n−connected components.

ii) X and X ∪ {x} have the same number of n−connected components.

iii) For each voxel B in X \{x}, the group morphism i∗ : Πn
1 (X \{x}, B) −→ Πn

1 (X, B)

induced by the inclusion map i : X \ {x} −→ X is an isomorphism.

Since voxels which satisfy Definition 10.5 obviously satisfy the three conditions of Theo-

rem 16, we only have to prove that voxels which satisfy the conditions i), ii) and iii) of

Theorem 16 do satisfy Definition 10.5. Then, we will first prove that the three conditions

of Theorem 16 together imply the local characterization of simple voxels given by Propo-

sition 10.1 (Section 10.2) and then show that this characterization itself implies that the

four conditions of Definition 10.5 are satisfied.

In the sequel of this chapter, x is a voxel of X which is a subset of Z3 and (n, n) ∈
{(6, 26), (26, 6)}.
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12.1 Local characterization of the new definition

The purpose of this section is to prove the following proposition which state that condi-

tions i), ii) and iii) of Theorem 16 imply that the voxel x satisfies a local characterization

of simple voxels which involves the topological numbers (see Section 10.2).

Proposition 12.1 If x satisfies the conditions of Theorem 16 then Tn(x,X) = 1 and

Tn(x, X) = 1.

In order to prove this proposition, we introduce several other propositions and lemmas.

The proof of the following Proposition is adapted from [11] to the formalism used here

which involves the digital fundamental group.

Proposition 12.2 If Tn(x,X) ≥ 2, then either an n−connected component of X is

created by deletion of x, or there exists a voxel B ∈ X \ {x} such the the morphism

i∗ : Πn
1 (X \ {x}, B) −→ Πn

1 (X, B) induced by the inclusion of X \ {x} in X is not onto.

The proof of Proposition 12.2 will use the following number ν (see Section 10.2 for the

definition of the geodesic neighborhood Gn(x,X)).

Definition 12.1 Let C be an n−connected component of Gn(x,X) and let α = (αi)i=0,...,l

be a closed n−path in X. We say that the n−path α goes from C to x at subscript i if

αi ∈ C and αi+1 = x; and we say that α goes from x to C at subscript i if αi = x and

αi+1 ∈ C. Then, we define νn(x, α, C) as the number of times α goes from C to x minus

the number of time α goes from x to C.

Lemma 12.3 Let C be an n−connected component of Gn(x,X) and let α and α′ be

two closed n−paths from B to B in X where B ∈ X \ {x}. If α 'n α′ in X then

νn(x, α, C) = νn(x, α′, C).

Proof of Lemma 12.3 : It is sufficient to prove this lemma when α and α′ are the

same up to an elementary n−deformation. Then, we have α = π1.γ.π2 and α′ = π1.γ
′.π2

where γ and γ′ have the same extremities and are included in a common 2×2×2 cube C

if (n, n) = (26, 6), in a 2×2 square if (n, n) = (6, 26). It is obvious that νn(x, α, C) −
νn(x, α′, C) = νn(x, γ, C)− νn(x, γ′, C).
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• Case (6, 26) : In this case, C is a 2×2 square. If x /∈ C then it is clear that ν6(x, γ, C) =

ν6(x, γ′, C) = 0. If x ∈ C and C ∩ C = ∅ then ν6(x, γ, C) = ν6(x, γ′, C) = 0.

Now, if x ∈ C and C ∩ C 6= ∅ then let a and b be the two extremities of γ and γ′.

If x has only one 6−adjacent voxel in X ∩ C, then since C ∩ C 6= ∅ it follows that this

voxel belongs to C. In this case, ν6(x, γ, C) = ν6(x, γ′, C) = 0 if a = b = x or {a, b} ⊂ C,

ν6(x, γ, C) = ν6(x, γ′, C) = +1 if a ∈ C and b = x, and ν6(x, γ, C) = ν6(x, γ′, C) = −1 if

a = x and b ∈ C.

If x has two 6−adjacent voxels in X∩C and those two voxels belong to C then ν6(x, γ, C) =

ν6(x, γ′, C) = −1 if a ∈ C and b = x, ν6(x, γ, C) = ν6(x, γ′, C) = +1 if a = x and b ∈ C,

ν6(x, γ, C) = ν6(x, γ′, C) = 0 if a = b = x or {a, b} ∈ C.

If x has two 6−adjacent voxels in X ∩ C and only one of these voxels, say d, belongs to

C, then the remaining voxel r of C which is 18−adjacent but not 6−adjacent to x cannot

be in X and so nor in C. It follows that γ and γ′ are both included in {x, d, r} and that

ν6(x, γ, C) = ν6(x, γ′, C). Finally, in all case we have ν6(x, γ, C) = ν6(x, γ′, C) so that

ν6(x, α, C) = ν6(x, α′, C).

• Case (26, 6) : If x /∈ C then it is clear that ν26(x, γ, C) = ν26(x, γ′, C) = 0. If x ∈ C

and C ∩ C = ∅ then ν26(x, γ, C) = ν26(x, γ′, C) = 0. Now, if x ∈ C and C ∩ C 6= ∅ then

(C ∩X) ⊂ C so γ,γ′ are contained in C ∪ {x}. Let a and b be the two extremities of γ

and γ′.

If a = b = x then ν26(x, γ, C) = ν26(x, γ′, C) = 0. If a = x and b ∈ C then ν26(x, γ, C) =

ν26(x, γ′, C) = −1. If a ∈ C and b = x then ν26(x, γ, C) = ν26(x, γ′, C) = +1. If

{a, b} ⊂ C then ν26(x, γ, C) = ν26(x, γ′, C) = 0. Finally, in all case we have ν26(x, γ, C) =

ν26(x, γ′, C) so that ν26(x, α, C) = ν26(x, α′, C). 2

Proof of Proposition 12.2 : Let C1 and C2 be two n−connected components of

Gn(x,X) which are n−adjacent to x. If C1 and C2 are not n−connected in X \{x}, since

they are n−connected in X then a new n−connected component is created by deletion

of x.

Now, suppose that C1 and C2 are connected in X \ {x}. Let a and b be two voxels of

X which are n−adjacent to x and such that a ∈ C1 and b ∈ C2. Then, there exists an

n−path π from a to b in X \ {x}. Now, let π′ be the closed n−path (a).π.(b, x, a). It

is clear that νn(x, π′, C1) = +1 since x /∈ π∗. Suppose that there exists in Aa
n(X \ {x})

a closed n−path α such that i∗([α]Πn
1 (X\{x},a)) = [α]Πn

1 (X,a) = [π′]Πn
1 (X,a). Then, α would
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be n−homotopic to π′ in X, but since α ∈ Aa
n(X \ {x}) it follows that νn(x, α, C1) = 0

whereas νn(x, π′, C1) = +1 from the very construction of the path π′. From Lemma 12.3 it

follows that α cannot be n−homotopic to π′ and then the morphism i∗ : Πn
1 (X\{x}, a) −→

Πn
1 (X, a) induced by the inclusion of X \ {x} in X is not onto. 2

Proposition 12.4 If Tn(x, X) = 0 then X has one n−connected less than X ∪ {x}.

Proof : If Tn(x, X) = 0, then no voxel of X is n−adjacent to x so that {x} is an

n−connected component of X \ {x}. 2

Now, using the linking number defined in Chapter 11 we will be able to prove the following

proposition.

Proposition 12.5 If Tn(x,X) = 1 and Tn(x, X) ≥ 2 then two n−connected component

of X are merged by deletion of x or there exists a voxel B ∈ X \ {x} such that the

morphism i∗ : Πn
1 (X \ {x}, B) −→ Πn

1 (X, B) induced by the inclusion of X \ {x} in X is

not one to one.

The main idea of this part is to use the linking number in order to prove Proposition 12.5.

Indeed, until this work and the possible use of the linking number, one could prove that

when Tn(x,X) = 1 and Tn(x, X) ≥ 2 and no n−connected component of X are merged by

deletion of x then there exists a voxel V ∈ X such that the morphism i∗′ : Πn
1 (X, V ) −→

Πn
1 (X ∪ {x}, V ) induced by the inclusion of X in X ∪ {x} is not onto. In other words,

“a hole is created in X ∪ {x}” by deletion of x in X. Such a proof is similar to the proof

of Proposition 12.2. Here, we show that in this case “a hole is created in X \ {x}” too.

More precisely, we prove that there exists a voxel B ∈ X \ {x} such that the morphism

i∗ : Πn
1 (X \ {x}, B) −→ Πn

1 (X,B) induced by the inclusion of X \ {x} in X is not one to

one.

Before proving Proposition 12.5, we must state several lemmas which use the following

definitions.

Definition 12.2 (6−extremity voxel) Let x be a voxel of Z ⊂ Z3, then x is said to be

a 6−extremity voxel of Z if x has exactly one 6−neighbor in Z.

Definition 12.3 (set K6(y, X, C)) Let y ∈ X such that T6(y, X) = 1 and T26(y, X) ≥
2. Let A = G6(y,X), which is 6−connected, and C be a 26−connected component of
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G26(y, X). Then, K0
6(y,X,C) is the set of voxels of A which are 26−adjacent to a voxel

of C. We define K6(y, X, C) as the set obtained after recursive deletions of 6−extremity

voxels in K0
6 .

Definition 12.4 (26−Bold voxel) Let y be a voxel of X, then y is a 26−bold voxel

in X if all the voxels of X which are 26−adjacent to y are included in a common 2×2×2
cube.

Definition 12.5 (set K26(y, X, C)) Let y ∈ X such that T26(y, X) = 1 and T6(y, X) ≥
2. Let A = G26(y, X), which is 26−connected, and C be a 6−connected component of

G6(y, X). Then, K0
26(y,X, C) is the set of voxels of A which are 6−adjacent to a voxel of

C. We define K26(y, X, C) as the set obtained after iterative deletions of 26−bold voxels

in K0
26.

Lemma 12.6 If Tn(x,X) = 1 and Tn(x, X) ≥ 2, then there exists an n−connected

component C of Gn(x, X) such that Kn(x,X, C) is a simple closed n−curve.

Proof : In order to prove this Lemma, we have investigated using a computer all the

226 possible configurations of N26(x). For each configuration such that Tn(x,X) = 1 and

Tn(x, X) ≥ 2 (there are 34653792 such configurations if (n, n) = (26, 6) and 4398983 for

the case (n, n) = (6, 26)), we have computed the different n−connected components Ci

of Gn(x, X) and checked that for at least one of them, the set Kn(x,X, Ci), which can

be computed following Definition 12.3 or Definition 12.5, was a simple closed n−curve.

The source of this program in C programming language can be found in Appendix A. 2

Lemma 12.7 Let x ∈ X such that Tn(x,X) = 1 and Tn(x, X) ≥ 2 and let A = Gn(x,X).

Then there exists a parameterized simple closed n−curve c in A and a closed n−path

β = (a).β′.(b, x, a) such that :

• β∗ ⊂ N26(x) ∩X,

• a and b are the only voxels of β′ in N26(x),

• If (n, n) = (6, 26) then Lc,β = ±1 and if (n, n) = (26, 6) then Lβ,c = ±1.

See Definition 11.5 for the definition of the linking number Lβ,c or Lc,β.
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Proof of Lemma 12.7 in the case (n, n) = (6, 26) :

From Lemma 12.6, if Tn(x, X) = 1 and Tn(x, X) ≥ 2 one can find a simple closed 6−curve

c = K6(x,X, C) in G6(x,X) for some C. Furthermore, from the very definition of the

set K6(x,X, C), each voxel of this curve is 26−adjacent to the 26−connected component

C of G26(x, X). In Figure 12.1, we have depicted up to rotations and symmetries all the

possible simple closed 6−curves in the 26−neighborhood of a voxel x. We will investigate

each kind of curve and show that for each one a convenient simple closed 6−curve can

be found in G6(x,X) together with a closed 26−path β in X ∪ {x} which satisfy the

properties of Lemma 12.7.

(a) (b) (c)

(d) (f)(e)
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Figure 12.1: The possible simple closed 6−curves (in black

points) in N18(x) up to rotations and symmetries.

2

Case of Figure 12.1(a)

From the definition of K6(x,X, C), each point of c must be 26−adjacent to C. Then, two

cases may occur : either C is constituted by the unique voxel z or not. If C is reduced

to the voxel z, then since Tn(x, X) ≥ 2, at least one of the remaining “not black” voxels

must belong to some connected component of G26(x, X) = N26(x) ∩ X different from

C = {z}. Let u be such a voxel, then it is clear that u and z can be connected by a

26−path β′ in N26(x) ∩X such that Lc,(u).β′.(z,x,u) = ±1 as depicted in Figure 12.2 where

c is the set of voxels of Figure 12.1(a). In this figure, it is clear that the only couple of

subscripts of c and β = (u).β′.(z, x, u) which have a contribution (see Definition 11.4)
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different from 0 is the couple corresponding to the voxel x in β and a in c. Now, from

the definition of this contribution, we have Lc,β = ±1.

Now, if z /∈ C and z /∈ X then z constitutes a 26−connected component of G26(x, X)

and in this case it can be linked to any voxel of C by a path β′ such that the path

β = (u).β′.(z, x, u) satisfies the properties of Lemma 12.7 with the simple closed 6−curve

c constituted by the black voxels of Figure 12.1(a).

Finally the case when z /∈ C and z ∈ X remains. In this case, since any point of

K6(x,X, C) must be 26−adjacent to C, and from the fact that G26(x, X) must have two

connected components, one of the connected components must be reduced to the point

t of Figure 12.1(a). Now, it follows that all the points of N26(x) ∩ N18(t) must belong

to X. Otherwise, it clear that t would be 26−adjacent to C; indeed for any point v

of N26(x) ∩ N18(t) it is possible to find a point ci of the 6−path c such that any point

of N26(x) \ (c∗ ∪ {z}) which is 26−adjacent to ci is also 26−adjacent to v. We obtain

the configuration depicted in Figure 12.3. Now, let c′ be the simple closed 6−curve

constituted by the 18−neighbors of t, this curve is included in C since C is connected

and all its points belong to G6(x,X). Furthermore, some of the points represented in

dotted lines in Figure 12.3 must not be in X (otherwise, T26(x,X) would be equal to

1). Let u be one of these points; similarly with the previous case, one can construct a

26−path β′ between t and u such that the path β = (t).β′.(u, x, t) satisfies the properties

of Lemma 12.7 with c′.

Case of Figure 12.1(b)

Let c1 be the simple closed 6−curve constituted by the black points of Figure 12.1(b). If

the component C is a subset of the set of points {r, s, t} then the point s must belong

to C since C is 26−connected and any point of c1 must be 26−adjacent to C. Now,

there must exist at least another 26−connected component of white voxels (of X) in

N26(x) \ ({r, s, t} ∪ c∗1). Let u be one point of this component, then there exists an

n−path β′ between s and u such that the path β = (u).β′.(s, x, u) satisfy the properties

of Lemma 12.7 with the simple closed 6−curve c1.

Now, suppose that C ∩ {r, s, t} = ∅. Same considerations allow us to find such paths β

and c also when the point s belongs to X, or when s ∈ X but only one of the points

r and t belong to X. In the case when s ∈ X and {r, t} ⊂ X (see Figure 12.4) a path

β′ linking the two voxels r and t is such that the path β = (r).β′.(t, x, r) satisfies the
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properties of Lemma 12.7 with a simple closed 6−curve c2 constituted by the voxels of

N26(x) ∩X which are 18−adjacent to r.

The case when {r, s, t} ⊂ X remains. In this case, the same argument as used in the case

of Figure 12.1(a) for the point t implies that the 26−connected component of G26(x, X)

distinct from C is reduced to p or to q, say q as in Figure 12.1(b). It follows that the

voxels of N26(x)∩N18(q) must belong to X, particularly these voxels constitute a simple

closed 6−curve c3. Now, let u be any voxel of the component C, u and q can be linked

by a path β′ such that the path β = (q).β′.(u, x, q) and the curve c3 satisfy the properties

of Lemma 12.7.

Case of Figure 12.1(c)

Let c be the set of black points of Figure 12.1(c).

First, we prove that {p, q, r, s, t} ∩ X 6= ∅. Indeed, suppose that {p, q, r, s, t} ⊂ X.

Then, since T26(x, X) ≥ 2, there must exist at least two 26−connected component in

B = (c∗ ∩N26(x)) \ {p, q, r, s, t}. Since the the point g must be 26−adjacent to C, either

the point u or the point u′ must belong to C. If u′ ∈ C and u /∈ C, then the point y (and

few other ones) could not be 26−adjacent to C since C = {u′} in this case. It follows

that u must belong to C. Now, the other 26−connected of G26(x, X) must be reduced to

the point v (for any remaining point v′ ∈ B different from v, it is possible to find a point

w of c such that any voxel of B which is 26−adjacent to w is either equal or 26−adjacent

to v′ so that this point v′ would belong to C if it belongs to X). Furthermore, the points

of N26(x) ∩ N18(v) must belong to X as depicted in Figure 12.5 so that the voxel y of

Figure 12.5 which belongs to c is not 26−adjacent to C. Then, {p, q, r, s, t} ∩X 6= ∅.
If s ∈ X and r ∈ X then C cannot be reduced to r neither included in {t, p, q} since

any black point must be 26−adjacent to C. It follows that {u, u′} ∩ C 6= ∅ (g must

be 26−adjacent to C). A path β′ connecting r to either u or u′ is such that the path

β = (r).β′.(u, x, r) or β = (r).β′.(u′, x, r) satisfies the properties of Lemma 12.7 together

with c.

If s ∈ X and r ∈ X, then either u or u′ belongs to C and a path β′ connecting u or u′ to

a point of {t, p, q} which must belong to X, is such that we may easily construct a closed

path β which satisfies the properties of Lemma 12.7 together with c.

If s ∈ X and p ∈ X, C cannot contain s since y must be 26−adjacent to C. It follows

that C cannot contain any point of {r, s, t, p, q} so that either u or u′ must belong to C.
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Finally, a path β′ linking s to either u or u′ is such that the path β = (s).β′.(u, x, s) or

β = (s).β′.(u′, x, s) satisfies the properties of Lemma 12.7 together with c.

If s ∈ X and p ∈ X, since T26(x, X) ≥ 2, there must exist a voxel w of X in (c∗∩N26(x))\
{p, q, r, s, t}. Then, a convenient 26−path β′ linking s to w can be found such that the

path β = (s).β′.(w, x, s) satisfies the properties of Lemma 12.7 together with c.

Case of Figure 12.1(d)

Let c be the set of black point of Figure 12.1(d).

We prove that one point of {p, q, r, s, t, y, z} must belong to X. Indeed, otherwise the

existence of a connected component of G26(x, X) distinct from C in c∗ ∪ {p, q, r, s, t, y, z}∩
N26(x) would contradict the fact that any point of c is 26−adjacent to C.

Now, let u be a point of {p, q, r, s, t, y, z}∩X. If u ∈ C then we can easily check that any

of the points in {p, q, r, s, t, y, z} either belong to X or to C. Then, since T26(x, X) ≥ 2,

there must exist a point v of X in c∗ ∪ {p, q, r, s, t, y, z} ∩ N26(x). Now, a 26−path β′

linking u to v is such that the path β = (u).β′.(v, x, u) does satisfy the properties of

Lemma 12.7 together with c.

Case of Figure 12.1(e)

In this case, one of the points q or q′ must belong to X. Indeed, otherwise some

26−connected component C of G26(x, X) such that any voxel of the curve c is adja-

cent to C could not exist. We can suppose without loss of generality that q belongs to

X (the case when q′ ∈ X is symmetric).

Now, if q does not belong to C then C cannot contain any point of {r, s, t, q, p, y, z}
(because all the points of c must be 26−adjacent to C). So there must exist a point u

of C in c∗ ∪ {r, s, t, p, q, y, z} ∩ N26(x). Then, a path β′ between u and q is such that

the path β = (u).β′.(q, x, u) does satisfy the properties of Lemma 12.7. If q belongs to

C, then any point of {r, s, t, p, y, z} must either belong to X or to C (from the fact that

any black point must be 26−adjacent to C). Since T26(x, X) ≥ 2 there must exist some

points of X in c∗ ∪ {r, s, t, p, y, z} ∩ N26(x). Let u be any such point, then a path β′

linking q to u is such that the path β = (q).β′.(u, x, q) does satisfy with c the properties

of Lemma 12.7.

Case of Figure 12.1(f)

Let c be the set of black points in this figure. If we suppose that one of the “sides” of c

in N26(x) does not contain any point of X, then N26(x) ∩X contains at least the black
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points depicted in Figure 12.6. But in this case, any point of c must be 26−adjacent to

a component C of G26(x, X), then any voxel depicted with dotted circles which would

belong to X would also be connected to C. This contradict the fact that T26(x, X) ≥ 2.

It follows that both sides of c in Figure 12.1(f) must contain a voxel of X and it is

clear that two voxels u and v of X in each side can be linked by a path β′ such that

β = (u).β′.(v, x, u) and the curve c satisfy the properties of Lemma 12.7.

u

c

x
a

Figure 12.2: A 6−curve c and a

26−path β such that Lc,β = ±1.

t

c’

Figure 12.3:

t

r

Figure 12.4:

u

v
y

Figure 12.5: Figure 12.6:

Proof of Lemma 12.7 in the case (26, 6) :

From Lemma 12.6, if T26(x,X) = 1 and T6(x, X) ≥ 2 one can find a simple closed

26−curve c = K26(x,X,C) in G26(x,X) for some C. In fact, from the very definition

of K26(x,X, C), it is clear that the curve K26(x,X, C) is included in N18(x). Indeed, c

cannot contain any voxel of N26(x) \N18(x) since obviously such a voxel would be a bold

26−voxel which cannot occur in K26(x, X,C).

Furthermore, from the very definition of the set K26(x,X, C), each point of this curve

is 6−adjacent to some 6−connected component of G6(x, X). In Figure 12.9, we have

depicted up to rotations and symmetries all the possible simple closed 26−curve c in the

18−neighborhood of a point x. We will investigate each kind of curve and show that for

each one a convenient simple closed 26−curve can be found in G26(x, X) together with a

closed 6−path β in X ∪ {x} which satisfy the properties of Lemma 12.7.

Case of Figure 12.9(a)
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Let c be the simple closed 26−curve constituted by the black points of Figure 12.9(a),

then the points u and v must both belong two X. Indeed, there must exist at least two

connected component in G6(x, X) and so at least two points of X must be 6−adjacent

to x. Now, the two voxels u and v can be connected by a 6−path β′ such that c with

β = (u).β′.(v, x, u) satisfy the properties of Lemma 12.7.

Case of Figure 12.9(b)

If u belongs to X, then since T6(x, X) ≥ 2, at least one of the points of {p, q, r, s, t} must

belong to X. A path β′ from such a point ω ∈ {p, q, r, s, t} to the point u is such that

the path β = (ω).β′.(u, x, ω) satisfies the properties of Lemma 12.7 together with a curve

c constituted by the black points of Figure 12.9(b).

If u ∈ X, then since each point of the curve must be 6−adjacent to C, the component

C contains the points p, q, r and s; and since T6(x, X) ≥ 2 the point t must belong

to X and must not be connected in G6(x, X) to the set {p, q, r, s}. It follows that the

points of N26(x) which are 6−adjacent to the point t must belong to X, furthermore they

constitute a simple closed 26−curve c such that c with a path β = (q).β′.(t, x, q) (where

β′ links the voxels q and t) does satisfy the properties of Lemma 12.7.

Case of Figure 12.9(c)

Since the black point y must be 6−adjacent to C, then either u ∈ C or s ∈ C. If

u ∈ C, then at least one point in {p, q, r, s, t}, say p, must belong to another 6−connected

component of G6(x, X). Then a 6−path β′ linking p to u can be found such that the

path β = (p).β′.(u, x, p) satisfies the properties of Lemma 12.7 together with the curve c

constituted by the black points of Figure 12.9(c).

Now, if s ∈ C and u ∈ X then a path β = (s).β′.(u, x, s) where β′ is a path from s to u

is convenient, still with the simple closed 26−curve c constituted by the black points of

Figure 12.9(c).

Finally, if s ∈ C and u ∈ X and from the fact that any black point of the simple closed

26−curve of Figure 12.9(c) must be 6−adjacent to C, we deduce that C contains the

points p, s and r. From the existence of another 6−connected component in G6(x, X),

the point t must belong to such a component. Since t must not be connected to the

points s, r and p in G6(x, X), the points b, c and d of Figure 12.7 must belong to X.

In this case, the simple closed 26−curve c constituted by the points a, b, c and d of

Figure 12.7 together with the 6−path β = (s).β′.(t, x, s) where β′ links s to t, do satisfy
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the properties of Lemma 12.7.

Case of Figure 12.9(d)

Since y is 6−adjacent to C, either u ∈ C or q ∈ C. If u ∈ C then s must also belong

to C since C is 6−connected and since any black point of the curve must be 6−adjacent

to C, then some point ω in {p, q, r, t} must be in X since T6(x, X) ≥ 2. A path β′ from

such a point to the point u can be found so that the path β = (ω).β′.(u, x, ω) satisfies

the properties of Lemma 12.7 with the simple closed 26−curve c constituted by the black

points of Figure 12.9(d).

The case when u /∈ C but u ∈ X is similar since q must belong to C in this case. The

path β′ being then considered links u and q.

Now, if u ∈ X and so q ∈ C it is then clear that r and p must belong to C. We also

prove that in this case s must belong to X. Indeed, suppose that s ∈ X, then the point

t must belong to a 6−connected component of G6(x, X) distinct from C. It follows that

the points of N6(t)∩N26(x) must belong to X and N26(x)∩X contains at least the black

points of Figure 12.8. But in this case, is is clear that the point a of Figure 12.8 which

belongs to the simple closed curve depicted in Figure 12.9(d) cannot be 6−adjacent to

the component C. Then, s ∈ X. Now, if s ∈ X, a path β = (r).β′.(s, x, r) where β′ links

r to s, together with the curve c constituted by the black points of Figure 12.9(d), will

satisfy the properties of Lemma 12.7.

Case of Figure 12.9(e)

In this case, let c be the simple closed 26−curve constituted by the black points of

Figure 12.9(e).

Since y is 6−adjacent to C then either u ∈ C or v ∈ C. If u ∈ C then q must belong

to C too and then one point in {v, p, r}, say v, must belong to X since T6(x, X) ≥ 2.

A 6−path β′ linking v to u can be found such that the path β = (v).β′.(u, x, v) satisfies

the properties of Lemma 12.7 together with the curve c. If v ∈ C then r and p must

belong to C and either u or q, say q, must belong to another 6−connected component of

G6(x, X) so belongs to X. Then, a path β = (v).β′.(q, x, v) v, where β′ links v to q, will

still satisfy the properties of Lemma 12.7.

Case of Figure 12.9(f)

In this case, let c be the simple closed 26−curve constituted by the black points of

Figure 12.9(f).
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Since y is 6−adjacent to C then either u ∈ C or v ∈ C.

If u ∈ C then q and t must belong to C too since each point of c is 6−adjacent to a point

of C which must be 6−connected. It follows that at least one point in {r, v, p} must

belong to another 6−connected component of G6(x, X) and so belongs to X. Finally, a

6−path linking a point of {r, v, p} to u will be such that one can find a path β which

satisfies the properties of Lemma 12.7 together with the curve c. The case when v ∈ C

is similar.

Case of Figure 12.9(g)

Let c be the simple closed 26−curve constituted by the black points of Figure 12.9(g).

If u ∈ C then q must belong to C and then either v or r belongs to a 6−connected

component of G6(x, X) and so belongs to X. Then, a path β′ linking v or r to u is

such that the path β = (v).β′.(u, x, v) or β = (r).β′.(u, x, r) satisfies the properties of

Lemma 12.7 with the curve c. The case when v ∈ C is similar.

Cases of Figures 12.9(h), 12.9(i), 12.9(j) and 12.9(h)

These cases are similar to the previous ones.

Case of Figure 12.9(l)

The point y must be 6−adjacent to C so that either u ∈ C or v ∈ C. Now, we prove that

u cannot belong to X. Indeed, if v ∈ C and u ∈ X, then the point r must belong to C

too since y′ must be 6−adjacent to C. Then, since C is 6−connected, there must exist a

6−path from r to v in G6(x, X) ⊂ N18(x). It is clear that such a path must contain the

point q and this contradict the fact that T6(x, X) ≥ 2. Finally, u ∈ X.

If u ∈ C then one point of {v, q, r} must belong to a 6−connected component of G6(x, X)

distinct from C and a 6−path β′ from one of these points, say v, to u can be found such

that the path β = (v).β′.(u, x, v) satisfies the properties of Lemma 12.7 with the curve c

constituted by the black points of Figure 12.9(l).

The case when v ∈ C and u ∈ X is similar.

Case of Figure 12.9(m) and Figure 12.9(n)

These cases are similar to the previous one and use the same arguments.

2

Lemma 12.8 Let x be a point of X such that Tn(x,X) = 1. Then, any closed n−path c

in Gn(x,X) is n−reducible in X.
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Figure 12.9: The possible simple closed 26−curves with a length greater than three in

N26(x) up to rotations and symmetries.
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Proof : Let c = (c0, . . . , cp) with c0 = cp. If (n, n) = (26, 6), then let c′ be the closed

path obtained after insertion of the point x in c between any two consecutive points of

c. It is clear that c '26 c′ in X since for any two consecutive points of c, x belongs

to some 2×2×2 cube which contains these two points. Now, c′ is of the following form :

c′ = (c0, x, c1, x, . . . , x, cn). In c′, each sequence of the form (x, ci, x) can be reduced to

(x) by an elementary 26−deformation. It follows that c '26 c′ '26 (c0, x, cn) '26 (c0, cn).

If (n, n) = (6, 26), we first observe that any closed 6−path in N18(x) can be deformed in

X into a path which only contains multiple occurrences of the point x and 6−neighbors

of x in X. Indeed, any point z of c which belongs to N18 \N6(x) occurs in a sub-sequence

(u, z, v) (note that c can also be made of a single voxel of N18(x) ∩ X). Then, u and v

are 6−neighbors of x and the points u, z, v and x are included in a 2×2 square. It follows

that the sequence (u, z, v) can be replaced by the sequence (u, x, v) in c by an elementary

6−deformation. By repeating this deformation for any such point z in c will lead to a

path c′ such that c′∗ ⊂ {x} ∪ (N6(x) ∩X) and it is then immediate that c′ '6 (c0, cp) in

X. 2

Proof of Proposition 12.5 : Let x be a point of X such that Tn(x,X) = 1 and

Tn(x, X) ≥ 2. Let c, β′ and β be the paths of Lemma 12.7 and a and b be the extremity

voxels of β′ which are the only two points of β′ in N26(x) and which are n−adjacent to

x. If a and b are not n−connected in X then it is clear that they are n−connected in

X ∪{x} so that two n−connected components of X are merged by deletion of x from X.

If a and b are connected by an n−path α in X. Then, it is obvious that the two n−paths

β′ and α are n−homotopic with fixed extremities in (N26(x) ∩X) ∪ {x}. It follows that β

is n−homotopic to the path α′ = (a).α.(b, x, a) in (N26(x) ∩X). Since (N26(x) ∩X) ⊂ c∗

and from Theorem 15 then Lc,β = Lc,α′ = ±1.

From Theorem 14, it follows that the path c is not n−reducible in α′∗ and since α′∗ ⊂
X ∪ {x} then X \ {x} ⊂ α′∗ so that a fortiori α′ cannot be n−homotopic to a trivial

path in X \ {x}. Formally, if B is the voxel of X \ {x} such that c is a closed n−path

from B to B, we have [c]Πn
1 (X\{x},B) 6= [1]Πn

1 (X\{x},B).

Now, from Lemma 12.8, c 'n (B, B) in X so that i∗([c]Πn
1 (X\{x},B)) = [c]Πn

1 (X,B) =

[1]Πn
1 (X,B) = i∗([1]Πn

1 (X\{x},B)) so i∗ is not one to one. 2

Proof of Proposition 12.1 : Suppose that properties i), ii) and iii) of Definition 10.5

are satisfied.
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From Proposition 12.2 we deduce that if i∗ is onto for any voxel B in X \ {x}, and no

n−connected component of X is created by deletion of x then Tn(x,X) < 2. Furthermore,

if no connected component of X is removed then Tn(x,X) 6= 0 (indeed, Tn(x,X) = 0

means that x constitutes an n−connected component of X since no other point of X is

n−adjacent to x). Finally, Tn(x,X) = 1.

From Proposition 12.5 we deduce that if i∗ is one to one for any voxel B ∈ X \{x}, and no

n−connected components of X are merged by addition of x in X then Tn(x, X) < 2. Fur-

thermore, if no connected component of X is created then Tn(x, X) 6= 0 (indeed, Tn(x, X)

means that no point of X is n−adjacent to x so that x constitutes an n−connected com-

ponent of X ∪ {x}). Finally, Tn(x, X) = 1. 2

12.2 The local characterization implies the previous

definition

In this section, we prove that the four properties of Definition 10.5 are satisfied when

Tn(x, X) = Tn(x, X) = 1.

Proposition 12.9 If Tn(x,X) = 1 and Tn(x, X) = 1, then conditions i), ii), iii) and

iv) of Definition 10.5 are satisfied.

In order to prove Proposition 12.9 we will state several propositions.

Proposition 12.10 If the set X has more n−connected components then X \ {x} then

Tn(x, X) = 0.

Proof : If X has more n−connected components then X \ {x} then some connected

component of X is removed by deletion of x, then no other point of X can belong to this

component. It follows that x has no n−neighbor in X and then Tn(x,X) = 0. 2

Proposition 12.11 If the set X \ {x} has more n−connected components than X then

Tn(x, X) ≥ 2.

Proof : If X \ {x} has more n−connected components than X, some connected

component of X has been created by deletion of x. In other words, there exist two voxels
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a and b in X such that a and b are connected in X but not in X \ {x}. It follows that

every n−path between a and b in X contains the voxel x. Then Tn(x,X) cannot be equal

to zero since in this case no path between a and b in X could contain x. Now, suppose

that Tn(x,X) = 1. In this case, for any n−path c between a and b in X, one can find

a path c′ from a to b in X \ {x}. Indeed, for any sequence of the form (y, x, z) in c,

the points y and z both belong to Gn(x,X) which is n−connected and so there exists

an n−path in X \ {x} between y and z. Then, any such sequence (y, x, z) in c can be

replaced by an n−path which does not contain x so that a and b are n−connected in

X \ {x}, which contradicts the definition of a and b. Finally, we have Tn(x,X) ≥ 2. 2

Proposition 12.12 If the set X has more n−connected components than X ∪{x}, then

Tn(x, X) ≥ 2.

Proof : The proof is similar to the proof of Proposition 12.11. 2

Proposition 12.13 If the set X ∪{x} has more n−connected components than X, then

Tn(x, X) = 0.

Proof : The proof is similar to the proof of Proposition 12.10. 2

Proposition 12.14 If Tn(x,X) = 1 and Tn(x, X) = 1 then for all B ∈ X \ {x} the

morphism i∗ : Πn
1 (X \ {x}, B) −→ Πn

1 (X, B) induced by the inclusion of X \ {x} in X is

an isomorphism.

Corollary 12.15 If Tn(x,X) = 1 and Tn(x, X) = 1 then for all B′ ∈ X the morphism

i′∗ : Πn
1 (X,B′) −→ Πn

1 (X ∪ {x}, B′) induced by the inclusion of X in X ∪ {x} is an

isomorphism.

Proof of Corollary 12.15 : Let Y = X ∪ {x} and (m,m) = (n, n). Furthermore,

let B′ be a voxel of X. Then Tm(x, Y ) = 1, Tm(x, Y ) = 1 and B′ ∈ Y \ {x}. From

Proposition 12.14, the morphism i∗ : Πm
1 (Y \ {x}, B′) −→ Πm

1 (Y,B′) induced by the

inclusion map i : Y \ {x} −→ Y is an isomorphism. But, Y \ {x} = X and Y = X ∪{x}
so i∗ is the morphism induced by the inclusion of X in X ∪ {x}. 2

In order to prove Proposition 12.14 we will first state that i∗ is onto (consequence of

Lemma 12.17 below) and then sate Lemma 12.22 which will allow us two prove that i∗ is

one to one.
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Lemma 12.16 If Tn(x,X) = 1 and a and b are two points of Nn(x) ∩ X. Then there

exists a simple n−path γ between a and b in Gn(x,X) such that (a, x, b) 'n γ in X.

Proof : Since Gn(x,X) is n−connected, there exists a simple n−path γ = (y0, . . . , yk)

in Gn(x,X) such that y0 = a and yk = b.

If (n, n) = (26, 6), it is clear that the voxels a = y0, x and y1 are included in a 2×2×2

cube. Then (a, x, b) ∼26 (a, y1, x, b) and we can repeat this process since two consecu-

tive voxels yi and yi+1 in γ are always included in a common 2×2×2 cube with x and

we obtain that (a, x, b) ∼26 (a, y1, x, b) ∼26 . . . ∼26 (a, y1, . . . , yk−1, x, b) and finally,

(a, y1, . . . , yk−1, x, b) ∼26 (a = y0, y1, . . . , yk−1, b = yk).

If (n, n) = (6, 26) then we first observe that k is necessarily even. Now, a = y0 ∈ N6(x)∩X

so that y1 ∈ (N18(x)\N6(x))∩X and y2 ∈ N6(x)∩X. Then the voxels y0, x, y1 and y2 are

included in a 2×2 square so that (a = y0, x) ∼6 (y0, y1, y2, x). This process can be iterated

to obtain that (a, x) '6 (y0, . . . yk, x) so that (a, x, b) '6 (y0, . . . , yk, x, yk) ∼6 (y0, . . . , yk).

2

Lemma 12.17 If Tn(x,X) = 1 and Tn(x, X) = 1 then for all B ∈ X \ {x} and all

n−path c of AB
n (X), there exists a path c′ in AB

n (X \ {x}) such that c 'n c′ in X.

Proof : Let B ∈ X\{x} and c = (c0, . . . , cq) be a closed n−path from B to B in X (B =

c0 = cl). For any maximal sequence (ci, . . . , cj) such that ci−1 6= x, cj+1 6= x and ck = x

for k = i, . . . , j it is obvious that c 'n (c0, . . . , ci−1, x, cj+1, . . . , cq) (observe that 0 < i ≤
j < l). Now, from Lemma 12.16 and since {ci−1, cj+1} ⊂ Nn(x), then (ci−1, x, cj+1) 'n γ

in X where γ is a path from ci−1 to cj+1 in Gn(x,X) so that x /∈ γ∗. Finally, c 'n

(c0, . . . , ci−1).γ.(cj+1, . . . , cq). By repeating such an n−homotopic deformation for any

similar maximal sequence (ci, . . . , cj) in c, it is clear that c is n−homotopic in X to a

closed n−path c′ such that x /∈ c′∗ (i.e. c′ ∈ AB
n (X \ {x})). 2

Lemma 12.18 If Tn(x,X) = 1 and Tn(x, X) = 1 then two paths π1 and π2 which have

the same extremities and are included in Gn(x,X) are n−homotopic with fixed extremities

in N26(x) ∩X.

In order to prove Lemma 12.18 we will use the following lemma.
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Lemma 12.19 If Tn(x, X) = 1 and Tn(x, X) = 1 then any simple closed n−path in

Gn(x,X) is n−reducible in N26(x) ∩X.

Corollary 12.20 If Tn(x,X) = 1 and Tn(x, X) = 1 then any closed n−path in Gn(x,X)

is n−reducible in N26(x) ∩X (i.e Gn(x,X) is simply n−connected).

Proof of Lemma 12.19 in the (6, 26) case : In this case, it is immediate that any

simple closed 6−path in G6(x,X) ⊂ N18(x)∩X is a simple closed 6−curve. In Figure 12.1

we have depicted up to rotations and symmetries all the possible simple closed 6−curves

in N18(x).

Case of Figure 12.1(a) :

Let c be the set of black points of Figure 12.1(a). In this case, either z ∈ X or all points

of N26(x) \ (c∗ ∪ {z}) must belong to X. Indeed, the case when z ∈ X and some point of

N26(x) \ (c∗ ∪ {z}) belongs to X contradict the fact that T26(x, X) = 1.

Now, if z ∈ X it is clear that c is 6−reducible in N26(x) ∩X, similarly when z /∈ X then

N26(x) \ (c∗ ∪ {z}) ⊂ X and c is obviously 6−reducible N26(x) ∩X.

Case of Figure 12.1(b) : In this case, either {r, s, t} ⊂ X or N26(x)\(c∗∪{r, s, t}) ⊂ X.

In both case, we can conclude as in the previous case.

Cases of Figures 12.1(c),. . . ,(f) : are similar to the previous ones. 2

Lemma 12.21 Let x ∈ X such that T26(x,X) = 1 and T6(x, X) = 1 and let c be the

parameterization of a simple closed 26−curve in G26(x,X). Then c is 26−reducible in

G26(x,X).

Proof : In Figure 12.9 are depicted up to rotations and symmetries all the possible

simple closed 26−curves in N26(x) with a length greater than three (a simple closed

26−curve with a length of three being obviously 26−reducible). Now, we must investigate

each of them and prove that, under the hypothesis T26(x,X) = 1 and T6(x, X) = 1, a

parameterization of each simple closed curve is 26−reducible in G26(x,X). Following

Lemma 2.6, if one parameterization is reducible, then any parameterization is.

Case of Figure 12.9(a)

In this case, exactly one point of {u, v} must belong to X, indeed {u, v} ⊂ X contradict

the fact that T6(x, X) = 1 whereas {u, v} ⊂ X implies that T6(x, X) = 0. If u ∈ X [resp.

v ∈ X], it is then obvious that c is 26−reducible in G26(x,X).
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Case of Figure 12.9(b)

If u ∈ X then it is clear that the curve c is 26−reducible in G26(x,X). If u /∈ X then

{p, q, r, s, t} ⊂ X. Indeed, otherwise G6(x, X) would not be 6−connected. As an example,

Figure 12.10 shows a sequence of elementary 26−deformations in G26(x,X) which leads

from c to the path reduced to its extremities when c is the parameterization of the curve

which starts en ends at this latter point.

~ ~ ~

~~ ~ ~

26 26 26

26 26 26 26

c

~26

Figure 12.10: A 26−homotopic deformation of the closed path c.

Case of Figure 12.9(c)

Since T6(x, X) = 1 we deduce that either u ∈ X or {p, s, r, t} ⊂ X. In both cases, any

parameterization c of the curve is 26−reducible in G26(x,X).

Case of Figure 12.9(d) In this case, either {u, s} ⊂ X or {p, q, r, t} ⊂ X and we

can conclude in both cases that any parameterization c of the simple closed curve is

26−reducible in G26(x,X).

Cases of Figures 12.9(e),. . . ,(n) In all these case, we can separate the set N6(x) \ c∗

into two sets A and B such that either A ⊂ X or B ⊂ X. In any case, the inclusion of

one of these sets in X allows the 26−deformation of c in G26(x,X) into the trivial path

reduced to its extremities. 2

Proof of Lemma 12.19 in the (26, 6) case : We prove this lemma by induction on

the length of c. Let c0 = c and suppose that ci is a simple closed 26−path with a length

l(ci) in G26(x,X) which is 26−connected.

First, suppose that there exists in ci three consecutive voxels which are included in a

2×2×2 cube C. In other words, ci = c1.(y, z, t).c2 where y, z and t belong to C. Then,

ci ∼26 ci+1 = ci
1.(y, t).ci

2 which has a length l(ci+1) = l(ci)− 1.
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Now, we suppose that for any sequence (y, z, t) in ci, the two voxels y and t are not

26−adjacent. Furthermore, suppose that there exists in ci a voxel y such that y has more

than two 26−adjacent voxels in ci∗. In other words, there exists another voxel z in ci

which is neither the successor nor the predecessor of y in ci but which is 26−adjacent

to y. Then, ci = ci
1.(y).ci

2.(z).ci
3 with l(ci

2) > 3 (indeed, if l(ci
2) = 3 then ci

2 = (y, u, z)

where y is 26−adjacent to z). We may suppose that the path ci
2 is one of the shortest

such sub-paths of ci which can be found satisfying the 26−adjacency property for its

extremities. Then, it follows that any voxel of ci
2 distinct from y and z has exactly two

neighbors in ci
2
∗

: its predecessor and its successor in c2. Indeed, the existence of a voxel

of ci
2 which has more then two 26−adjacent voxels in ci

2
∗

would contradict the fact that

ci
2 is a shortest sub-path of ci whose extremities are 26−adjacent. Furthermore, y [resp.

z] has exactly two neighbors in ci
2
∗

: its successor in ci
2 and z [resp. its predecessor in ci

2

and y]. Then, ci
2
∗

is a simple closed n−curve and ci
2.(z, y) is a parameterization of this

curve. From Lemma 12.21, we have ci
2.(z, y) '26 (y, y) in G26(x,X). On the other hand,

it is obvious that ci '26 ci
1.(y).ci

2.(z, y, z).ci
3 in G26(x,X). Finally ci '26 ci

1.(y, z).ci
3 = ci+1

in G26(x,X) and ci+1 is a simple closed 26−path such that l(ci+1) < l(ci).

In the remaining case, any voxel of ci has exactly two 26−adjacent voxels in ci∗. Then, ci

is a parameterization of a simple closed n−curve and from Lemma 12.21 ci is n−reducible

in G26(x,X), i.e. ci '26 ci+1 in G26(x,X) with l(ci+1) = 1.

In all cases, the path ci is 26−homotopic to a simple closed 26−path ci+1 such that

l(ci+1) < l(ci). By induction and since l(ci) ≥ 1, there must exists an integer j such that

l(cj) = 1 and c0 '26 cj. 2

Proof of Corollary 12.20 : If c is not simple, then there must exist a simple closed

n−path γ from a point y ∈ c∗ to y such that c = c1.γ.c2. Then, from Lemma 12.19, we

have γ 'n (y, y) in Gn(x,X) so that c ' c1.c2 in Gn(x,X). Now, we can iterate this

process to obtain that c is n−homotopic to a simple closed path in Gn(x,X) and finally

26−reducible Gn(x,X). 2

Proof of Lemma 12.18 : Let π and π′ be two n−paths from a voxel a to a voxel b

in Gn(x,X). From Corollary 12.20, the set Gn(x, X) is simply n−connected and from

Proposition 2.5 it follows that π and π′ are n−homotopic in Gn(x,X). 2

Now, we will prove the following lemma which allows us to prove that the morphism i∗

of Proposition 12.14 is one to one.
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Lemma 12.22 If Tn(x,X) = 1 and Tn(x, X) = 1 then, for any voxel B ∈ X \ {x}, two

closed n−paths c and c′ of AB
n (X \ {x}) which are n−homotopic in X are n−homotopic

in X \ {x}.

Proof : Given a closed n−path c in AB
n (X), we denote by σ(c) the n−path of AB

n (X \
{x}) which is n−homotopic to c in X following the proof of Lemma 12.17. It is sufficient

to prove that if c and c′ are the same up to an elementary n−deformation in X then the

two paths σ(c) and σ(c′) are n−homotopic in X \ {x}. We suppose that c = c1.γ.c2 and

c′ = c1.γ
′.c2 where γ and γ′ are two n−path with the same extremities and included in a

2×2×2 cube if (n, n) = (26, 6), in a 2×2 square if (n, n) = (6, 26).

If x /∈ γ∗ ∪ γ′∗ we observe that σ(c) = σ(c1).γ.σ(c2) and σ(c′) = σ(c1).γ
′.σ(c2) and then

c ∼n c′ in X \ {x}.
Now, if x ∈ γ∗ ∪ γ′∗ let a be the last voxel of c1 distinct from x and let b be the first

voxel of c2 distinct from x. Then, let δ be the sub-path of c from a to b and δ′ be the

sub-path of c′ between a and b. We denote by π1 the sub-path of c from its first voxel to

a and by π2 the sub-path of c from b to its last voxel. Finally, we have c = π1.δ.π2 and

c′ = π1.δ
′.π2. Since a and b, the two extremities of δ and δ′, are distinct from x, it follows

that : σ(c) = σ(π1).σ(δ).σ(π2) and σ(c′) = σ(π1).σ(δ′).σ(π2).

Now, since x ∈ γ∗∪γ′∗ and since γ and γ′ are 6−paths [resp. 26−paths] included in a 2×2

square which contains x [resp. a 2×2×2 cube], it is straightforward that γ and γ′ are paths

included in G6(x,X) ∪ {x} [resp. G26(x,X)] and from their construction so are δ and

δ′. Now, from the very definition of σ(δ) and σ(δ′) (see the proof of Lemma 12.17) it is

straightforward that σ(δ) and σ(δ′) are two n−paths in Gn(x,X) with same extremities.

From Lemma 12.18, we conclude that σ(δ) 'n σ(δ′) in N26(x) ∩X ⊂ X \ {x}. Finally,

σ(c) 'n σ(c′) in X \ {x}. 2

Proof of Proposition 12.14 : Let B be a voxel of X \{x}. From Lemma 12.17, for any

closed path c′ ∈ AB
n (X) (and so for any homotopic class of path [c′]Πn

1 (X,B)) there exists

a path c ∈ AB
n (X \ {x}) such that c 'n c′ in X so that i∗([c]Πn

1 (X\{x},B)) = [c]Πn
1 (X,B) =

[c′]Πn
1 (X,B). Then, the morphism i∗ is onto.

Now, suppose that c1 and c2 are two closed paths of AB
n (X \ {x}) such that [c1]Πn

1 (X,B) =

[c2]Πn
1 (X,B), where [c1]Πn

1 (X,B) = i∗([c1]Πn
1 (X\{x},B)) and [c2]Πn

1 (X,B) = i∗([c2]Πn
1 (X\{x},B)).

Then, c1 'n c2 in X and from Lemma 12.22, it follows that c1 'n c2 in X \ {x}.
Finally, we have [c1]Πn

1 (X\{x},B) = [c2]Πn
1 (X\{x},B) and then i∗ is one to one. 2
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Proof of Proposition 12.9 : Suppose that Tn(x,X) and Tn(x, X) = 1. Then, follow-

ing Proposition 12.10 and Proposition 12.11, Tn(x, X) = 1 implies that Condition i) of

Definition 10.5 is satisfied. Furthermore, from Proposition 12.12 and Proposition 12.13,

Tn(x, X) = 1 implies Condition ii) of Definition 10.5. Finally, from Proposition 12.14

and Corollary 12.15, we have Tn(x,X) = 1 and Tn(x, X) = 1 ⇒ iii) and iv). 2

Then, we achieve the proof of the main result of this part.

Proof of Theorem 16 : Following Definition 10.5, a simple voxel obviously satisfies

the three conditions of Theorem 16. Now, from Proposition 12.1, a voxel which satisfies

the three conditions of Theorem 16 is such that Tn(x,X) = Tn(x, X) = 1. Finally,

from Proposition 12.9, if Tn(x,X) = Tn(x, X) = 1 then x satisfies the four conditions of

Definition 10.5. 2
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Conclusion of Part III

In this part, a new tool for studying topological properties of objects in Z3 has been

introduced. This tool, the linking number, has the same properties as its continuous

analogue. A proof of its most important properties is given with no need of the use of

notions of the continuous case. Indeed, the proof given here need no more tools than

those exposed in the first part of this thesis. The very few notions of digital topology

which are used here show that some strong properties can be proved with the only use of

the digital theoretical framework.

Furthermore, an application of the linking number to prove a new – because more concise

– characterization of 3D simple points has been given (for (n, n) ∈ {(6, 26), (26, 6)}). This

new theorem shows the usefulness of the linking number in order to prove new theorems

which involve the digital fundamental group in Z3.

Now, even if the linking number is well defined for (n, n) ∈ {(6+, 18), (18, 6+)}, it has not

been used yet to provide a characterization of 3D simple points, similar to Theorem 16,

for the latter couples of adjacency relations. This, because an open question remains

about the existence of a simple closed curve, analogue to the curves K6(x,X, C) and

K26(x,X,C) (Definitions 12.3 and 12.5), in this case. Nevertheless, further investigations

should allow us to provide a simple process (such as “recursive deletion of 26−bold vox-

els”) which leads to the construction of the convenient curve, given a local configuration.





Conclusion and perspectives

In this document, we have defined some new tools and proved several theorems which

show that the digital fundamental group is a powerful tool for the characterization of

topology preservation in a digital space. We may summarize this as follows :

• The digital fundamental group allows us to properly define simple surfels in digital

surfaces, in other words, it fully characterizes topology preservation by removal of

a unique spel in such a digital space.

• The digital fundamental group fully characterizes lower homotopy within digital

surfaces (except in a very particular case).

• The digital fundamental group allows us to properly define simple voxels in Z3,

in other words, it fully characterizes topology preservation by removal of a unique

voxel. Furthermore, this characterization only involves the fundamental group of

the object (not its complement).

• The digital fundamental group provides a theoretical criterion for lower homotopy

for subsets of Z3.

However, it is shown that the digital fundamental group is not sufficient to characterize

lower homotopy. Indeed, one could try to give some necessary and sufficient conditions

for an objet Y ⊂ X to be lower n−homotopic to X when X and Y are subsets of Z3.

Today, it appears that such a condition will be very hard to find using the tools we have

at our disposal. Indeed, the digital fundamental group which is very useful to formalize

a global characterization of 3D simple points (see Chapter 10 and Chapter 12) shows

some limitations for the characterization of lower homotopy. The fact is that the natural

conditions of Definition 10.5 are not sufficient since the object Z depicted in Figure 12.11

(thanks to T.Y. Kong for this example which may also be found as an exercise page 189
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in [43]) has the property that any element of AB
6 (Z) is reducible in Z for any voxel B ∈ Z.

Then, let x be any voxel of Z, it follows that the morphism i∗ : Π6
1({x}, x) −→ Π6

1(Z, x)

induced by the inclusion of {x} in Z is an isomorphism. However, the set {x} is obviously

not lower 6−homotopic to Z since this latter set has no 6−simple voxel according to

Theorem 16.

(a) A 3D outside view of the house-with-two-rooms.

Layer 1 Layer 2 Layer 3 Layer 5 Layer 6

(b)

Figure 12.11: The “Bing’s house-with-two-rooms”.

Now, we could also try to find some necessary and sufficient conditions for two objects of

Z3 to be equivalent up to a symmetric homotopic deformation. In this purpose, the digital

fundamental group may appear as a useful tool. Intuitively, the object Z previously

introduced and its background are both characterized by the fact that for any voxel

B ∈ Z and any B′ ∈ Z, the groups Π6
1(Z, B) and Π26

1 (Z,B′) are trivial. Then, since

it is obviously possible to sequentially add and remove simple voxels to this set and

finally obtain a set reduced to a single voxel, we could hope that the digital fundamental

group characterizes symmetric homotopy (this latter notion is once again illustrated in

Figure 12.12). Obviously, the answer to this hope is no.

Indeed, let us suppose that an algorithm exists which always answer in a reasonable time

to the following problem :
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(a) (b)

Figure 12.12: Two subsets of Z3 which

are the same up to a symmetric homo-

topic deformation.

SH3D : Data : X ⊂ Z3 and Y ⊂ Z3

Result : YES if X and Y are symmetrically homotopic

NO otherwise.

Today, no proof has been given which states that such a problem is decidable. Indeed,

even a naive method which would check all the possible sequences of deletion or addition

of simple voxels between the two considered objects is not proved to end for any input

data.

Then, consider the problem of deciding whether two knots in R3 can or cannot be de-

formed one into each other by an ambient continuous deformation. This problem will

have a solution when one will provide a complete invariant of the knots, which today

has not been found. Now, it is readily seen that given two knots in R3, one can find

a digitalization step under which a digital image of each knot can be given in such a

way that the knot problem becomes a case of the symmetric homotopy problem (see

Figure 12.13). Rigorously, we should prove that any ambient continuous deformation of

a knot can be achieved by a sequence of insertion/deletion of simple voxels. Note that

this latter property is very dependent to the digitalization step. Furthermore, we should

also prove that symmetric homotopy cannot link together two objects whose polygonal

analogues are not the same up to a continuous deformation. Nevertheless, the sketch

given here may convince the reader that the symmetric homotopy problem is at least as

difficult as the knot problem.

However, a classical result of knot theory, which shows that the knot group is not a

complete invariant for knots, is that the digital (digital) fundamental groups of the com-
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plement of the objects X1 and X2 of Figure 12.13 are isomorphic whereas this two knots

are not equivalent. In other words, the objects X1 and X2 are not symmetrically homo-

topic.

(a) X1 (b) X2

Figure 12.13: For any B1 ∈ X1 and any B2 ∈ X2, the fundamental groups Πn
1 (X1, B1)

and Πn
1 (X2, B2) are isomorphic.

In [78], Nakamura and Rosenfeld stated the link between polygonal knots in R3 and digital

knots in Z3. This latter paper can be seen as a first attempt to make a link between knot

theory and the characterization of symmetric homotopy in Z3.
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X complement of the set X 17
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π1.π2 paths catenation 20
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∼R relation of elementary R−deformation 38

'R R−homotopy relation 38

AB
R(X) set of closed R−paths from B to B in X 42

ΠR
1 (X, B) quotient set of AB

R(X) following 'R 42

[c]ΠR1 (X,B) homotopy class of c in X following 'R 43

Iπ,c Intersection number of the paths π and c 97

Leftπ(k), Rightπ(k) left an right local sets of a path 94

Lπ,c Digital linking number of the paths π and c 172

Pc(i) Projective movement of the path c at sub-

script i

171

cn(s) n−path associated with a path of border

edgels

138
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Appendix A

Proof of Lemma 12.6

In this appendix, we provide the C source files of a program which investigates all the local

3× 3× 3 configurations of points such that Tn(x,X) = 1 and Tn(x, X) ≥ 2 ; and which

check that at least one of the sets Kn(x,X,C) associated with each such configuration is a

simple closed n−curves for n ∈ {6, 26} for some n−connected component C of Gn(x, X).

This program is separated in several files. The file config.h contains the declaration

of the data types and the few functions related to a local configuration (type Config).

These latter functions are defined in the file config.c.

Description of the type Config

The type Config defined in config.h is an unsigned long integer where the bit of weight

n is associated with a point of N26(x) ∩ X following the convention of Figure A.1. As

an illustration, we give in Figure A.2 the meaning of the bit mask “MASK CUBE0”

of the file config.h. Thus, operation such that “add to the configuration cnf a the

6−neigbords of the point number i in the configuration cnf b” can be achieve by very

simple bitwise operation. Similarly, checking if all the points of a configuration belong

to a 2×2×2 cube is done using the concise condition found in the file config.c (function

In 2x2x2Cube()).
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Figure A.1: Convention for the parame-

terization of N26(x).
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Figure A.2: This 2×2×2 cube is repre-

sented as the integer 20 + 21 + 23 + 24 +

29+210+213 (= “MASK CUBE0” in file

config.h).

File : Makefile

CC = gcc −Wall

proof: proof.c config.o
gcc −o proof proof.c config.o

config.o: config.h config.c
gcc −c config.c
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File : config.h

#ifndef CONFIG H
#define CONFIG H

/* *************************************************************************
* FILE : config.h
* AUTHOR : Sebastien FOUREY
* DESCRIPTION : definition of several constants and arrays for
* the manipulation of local 3x3x3 configurations.
*
* Declarations of the following functions 10

*
* int cnfCardinal(Config);
* Config cnfComplement(Config);
* int cnfNbConnectedComponents(Config, int list[ ][32])
* Config cnfG6(Config cnf);
* Config cnfG26(Config cnf);
* Config FindConnectedComponent(Config, const Config [ ]);
* int SimpleClosed26Curve(Config);
* int SimpleClosed6Curve(Config config);
* 20

*************************************************************************
*/

#define CENTER 13
#define END 127

#define MASK CONFIG 0x07FFFFFF
#define MASK CENTER 0x00002000

#define MASK N26 0x07FFDFFF 30

#define MASK N18 0x2EBDEBA
#define MASK N6 0x415410

#define MASK 0 0x1
#define MASK 1 0x2
#define MASK 2 0x4
#define MASK 3 0x8
#define MASK 4 0x10
#define MASK 5 0x20
#define MASK 6 0x40 40

#define MASK 7 0x80
#define MASK 8 0x100
#define MASK 9 0x200
#define MASK 10 0x400
#define MASK 11 0x800
#define MASK 13 0x2000
#define MASK 14 0x4000
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#define MASK 15 0x8000
#define MASK 16 0x10000
#define MASK 12 0x1000 50

#define MASK 17 0x20000
#define MASK 18 0x40000
#define MASK 19 0x80000
#define MASK 20 0x100000
#define MASK 21 0x200000
#define MASK 22 0x400000
#define MASK 23 0x800000
#define MASK 24 0x1000000
#define MASK 25 0x2000000
#define MASK 26 0x4000000 60

#define MASK CUBE0 0x361B
#define MASK CUBE1 0x6C36
#define MASK CUBE2 0x1B0D8
#define MASK CUBE3 0x361B0
#define MASK CUBE4 0x6C3600
#define MASK CUBE5 0xD86C00
#define MASK CUBE6 0x361B000
#define MASK CUBE7 0x6C36000

70

typedef unsigned long Config;

/* The6Neighbors[i] is a configuration which contains all the points */
/* of N26(x) which are 6-adjacent to the point number i */
static const Config The6Neighbors[27] = {

0x20a, 0x415, 0x822, 0x1051, 0xaa, 0x4114,
0x8088, 0x10150, 0x200a0, 0x41401, 0x80a02, 0x104404,

0x208208, 0x415410, 0x820820, 0x1011040, 0x2028080, 0x4014100,
0x280200, 0x540400, 0x880800, 0x1441000, 0x2a80000, 0x4504000,

0x2208000, 0x5410000, 0x2820000}; 80

static const Config The26Neighbors[27] = {
0x161a, 0x5e3d, 0x4c32, 0x196d3, 0x3dfef, 0x34d96, 0x19098,

0x3d178, 0x340b0, 0x6c141b, 0xfc5a3f, 0xd84436, 0x36d86db, 0x7ffdfff,
0x6db0db6, 0x36110d8, 0x7e2d1f8, 0x6c141b0, 0x681600, 0xf45e00, 0xc84c00,
0x34d9600, 0x7bfde00, 0x65b4c00, 0x2619000, 0x5e3d000, 0x2c34000 };

static const int List6Neighbors[27][32] =
{{ 1, 3, 9, END }, 90

{ 0, 2, 4, 10, END },
{ 1, 5, 11, END },
{ 0, 4, 6, 12, END },
{ 1, 3, 5, 7, END },
{ 2, 4, 8, 14, END },
{ 3, 7, 15, END },



Appendix A. Proof of Lemma 12.6 229

{ 4, 6, 8, 16, END },
{ 5, 7, 17, END },
{ 0, 10, 12, 18, END },
{ 1, 9, 11, 19, END }, 100

{ 2, 10, 14, 20, END },
{ 3, 9, 15, 21, END },
{ 4, 10, 12, 14, 16, 22, END },
{ 5, 11, 17, 23, END },
{ 6, 12, 16, 24, END },
{ 7, 15, 17, 25, END },
{ 8, 14, 16, 26, END },
{ 9, 19, 21, END },
{ 10, 18, 20, 22, END },
{ 11, 19, 23, END }, 110

{ 12, 18, 22, 24, END },
{ 19, 21, 23, 25, END },
{ 14, 20, 22, 26, END },
{ 15, 21, 25, END },
{ 16, 22, 24, 26, END },
{ 17, 23, 25, END }};

static const int List26Neighbors[27][32] =
{{ 1, 3, 4, 9, 10, 12, END }, 120

{ 0, 2, 3, 4, 5, 9, 10, 11, 12, 14, END },
{ 1, 4, 5, 10, 11, 14, END },
{ 0, 1, 4, 6, 7, 9, 10, 12, 15, 16, END },
{ 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, END },
{ 1, 2, 4, 7, 8, 10, 11, 14, 16, 17, END },
{ 3, 4, 7, 12, 15, 16, END },
{ 3, 4, 5, 6, 8, 12, 14, 15, 16, 17, END },
{ 4, 5, 7, 14, 16, 17, END },
{ 0, 1, 3, 4, 10, 12, 18, 19, 21, 22, END },
{ 0, 1, 2, 3, 4, 5, 9, 11, 12, 14, 18, 19, 20, 21, 22, 23, END }, 130

{ 1, 2, 4, 5, 10, 14, 19, 20, 22, 23, END },
{ 0, 1, 3, 4, 6, 7, 9, 10, 15, 16, 18, 19, 21, 22, 24, 25, END },
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18,

19, 20, 21, 22, 23, 24, 25, 26, END },
{ 1, 2, 4, 5, 7, 8, 10, 11, 16, 17, 19, 20, 22, 23, 25, 26, END },
{ 3, 4, 6, 7, 12, 16, 21, 22, 24, 25, END },
{ 3, 4, 5, 6, 7, 8, 12, 14, 15, 17, 21, 22, 23, 24, 25, 26, END },
{ 4, 5, 7, 8, 14, 16, 22, 23, 25, 26, END },
{ 9, 10, 12, 19, 21, 22, END },
{ 9, 10, 11, 12, 14, 18, 20, 21, 22, 23, END }, 140

{ 10, 11, 14, 19, 22, 23, END },
{ 9, 10, 12, 15, 16, 18, 19, 22, 24, 25, END },
{ 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, END },
{ 10, 11, 14, 16, 17, 19, 20, 22, 25, 26, END },
{ 12, 15, 16, 21, 22, 25, END },
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{ 12, 14, 15, 16, 17, 21, 22, 23, 24, 26, END },
{ 14, 16, 17, 22, 23, 25, END }};

int cnfCardinal(Config);
/* Returns the number of point in the configuration */ 150

inline Config cnfComplement(Config);
/* Returns the complement of a configuration */

Config cnfG6(Config);
/* Returns G {6}(x,X) */

Config cnfG26(Config);
/* Returns G {26}(x,X) */

160

Config FindConnectedComponent(Config config, const Config TheNeighbors[ ]);
/* Returns an n-connected component of the configuration

neighbrs[i] is a configuration which contains the points of
N {26}(x) which are n-adjacent to the point i
Returns 0 is the configuration is empty

*/

int SimpleClosed26Curve(Config);
/* Checks if the configuration is a simple closed 26-curve */ 170

int SimpleClosed6Curve(Config);
/* Checks if the configuration is a simple closed 6-curve */

int cnfNbConnectedComponents(const Config config, const int list neighbors[27][32]);
/* Counts the number of n-connected components in the configuration */

#endif

180
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File : config.c

#include "config.h"

/* *************************************************************************
* FILE : config.c
* AUTHOR : Sebastien FOUREY
* DESCRIPTION : definition of the functions declared in config.h
*************************************************************************

*/

int cnfCardinal(Config config)
{ 10

int result=0;
while (config)
{

if (config & 1) result++;
config>>=1;

}
return result;

}

inline Config cnfComplement(Config config) 20

{ return (˜config)&MASK N26; }

Config cnfG6(Config config)
{

Config result=0;
Config add=0;

result = config & MASK N6;

if (result & MASK 4) add |= The6Neighbors[4]; 30

if (result & MASK 10) add |= The6Neighbors[10];
if (result & MASK 12) add |= The6Neighbors[12];
if (result & MASK 14) add |= The6Neighbors[14];
if (result & MASK 16) add |= The6Neighbors[16];
if (result & MASK 22) add |= The6Neighbors[22];
result |= (config & add);
return result;

}

Config cnfG26(Config cnf) 40

{ return cnf & MASK N26; }

Config FindConnectedComponent(Config config, const Config TheNeighbors[ ])
{

Config old,grow,add;
int i;
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if (!config) return 0;
i=0; /* Find a starting point */
while ( !(config & (1<<i)) ) i++; 50

grow = 1<<i; /* Grow the component associated with */
do
{ /* point number i until stagnation */

old = grow;
add=0; /* Add to grow the 6-beighbords in */
for (i=0; i<27 ; i++) /* configuration of the points of grow */

if (grow & (1<<i))
add |=(config & (TheNeighbors[i]));

grow |= add; 60

} while (grow != old);

return grow;
}

int SimpleClosed26Curve(Config config)
{

int i;
for (i=0; i<27 ; i++)
{ 70

if ( ( config & (1<<i)) &&
( cnfCardinal( config & The26Neighbors[i]) != 2))

return 0;
}
return 1;

}

int SimpleClosed6Curve(Config config)
{

int i; 80

for (i=0; i<27 ; i++)
{

if ( ( config & (1<<i)) &&
( cnfCardinal(config & The6Neighbors[i]) != 2))

return 0;
}
return 1;

}

int cnfNbConnectedComponents(const Config config, const int list neighbors[27][32]) 90

{
Config not seen,mask;
int n=0;
int result=0;
unsigned int queue[32];
unsigned int * q head = queue;



Appendix A. Proof of Lemma 12.6 233

unsigned int * q end = queue;
const int * neighbor;

not seen = MASK N26 & config; 100

while (not seen)
{

n=0; result++;
q head=q end=queue;
mask=1;
while (!(not seen & mask)) { n++; mask<<=1; }
*q end = n;
q end++;
not seen^=mask; 110

while (q head<q end)
{

neighbor = list neighbors[*q head]; /* dequeue a point */
q head++;

while (*neighbor != END)
{

mask = 1<<(*neighbor);
if (not seen & mask) /* enqueue neighbor if not already visited */
{ 120

*q end=*neighbor;
q end++;
not seen ^= mask; /* Mark neighbor as visited */

}
neighbor++;

}
}

}
return result;

} 130
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File : proof.c

#include "config.h"

/* ***********************************************************************
* *
* FILE : proof.c *
* AUTHOR : Sebastien FOUREY *
* DESCRIPTION : Automatic proof *
* *
***********************************************************************

*/
10

/* Find all the 6-connected components C of G 6(x,\overline{X}) and check *
* for each one if the associated set K is a simple closed 26-curve. *
* Return 0 if no such K is a simple closed 26-curve *
* Return 1 otherwise */

int FindK26Candidates(Config configuration);

/* Find all the 26-connected components C of G 26(x,\overline{X}) and check *
* for each one if the associated set K is a simple closed 6-curve. *
* Return 0 if no such K is a simple closed 6-curve *
* Return 1 otherwise */ 20

int FindK6Candidates(Config configuration);

/* Check if all the points of the configuration belong to *
* a 2x2x2 cube */

int In 2x2x2Cube(Config config);

/* MAIN FUNCTION */
int main()
{

Config config; 30

unsigned long n;

/* Proof of the case (26,6) */
printf("Exploring config. : T26(x,X)=1 et T6(x,overline{X})>=2\n");
for (config= 0 ; config <= 0x07FFFFFF ; config++)
{

if (!(config & MASK CENTER) &&
(cnfNbConnectedComponents(cnfG26(config),

List26Neighbors) == 1) &&
(cnfNbConnectedComponents(cnfG6(cnfComplement(config)), 40

List6Neighbors) >= 2))
{

n++;
if (!FindK26Candidates(config))
{

printf("Error: No s.c. 26-curve found %lu (%lx)\n",config,config);
exit(−1);
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}
}

} 50

printf( " %lu configurations w. T26(x,X)=1 and T6(x,overline{X})>=2 \n",n);

/* Proof of the case (6,26) */
printf(" Exploring config. : T6(x,X)=1 and T26(x,overline{X})>=2\n");
n=0;
for (config=0 ; config <= 0x07FFFFFF ; config++)
{

if (!(config & MASK CENTER) &&
(cnfNbConnectedComponents( cnfG6(config),

List6Neighbors)==1) && 60

(cnfNbConnectedComponents(cnfG26(cnfComplement(config)),
List26Neighbors)>=2))

{
n++;
if (!FindK6Candidates(config))
{

printf("Error: No s.c. 6-curve found %lu (%lx)\n",config,config);
exit(−1);

}
} 70

}
printf( " %lu configurations w. T6(x,X)=1 and T26(x,overline{X})>=2\n",n);

}

/* Find all the 6-connected components C of G 6(x,\overline{X}) and check
for each one if the associated set K is a simple closed 26-curve.
Return 0 if no such K is a simple closed 26-curve
Return 1 otherwise */

int FindK26Candidates(Config configuration) 80

{
Config K,K0,C;
Config seen=0;
Config G26 = configuration & MASK N26; /* G26(x,X) */
Config G6Comp = cnfG6(cnfComplement(configuration)); /* G6(x,\overline{X}) */
int some removal;
int i,s;

while (( C = FindConnectedComponent(G6Comp & ˜seen, The6Neighbors)))
/* C is a 6-connected component in G6(x,\overline{X}) which */ 90

/* has not been already tested */
{

K0=0; /* Build the set K0 associated to cc complement */
for (i=0 ; i<27 ; i++)
{

if ((G26 & (1<<i)) /* The point “i” belongs to G26(x,X) */
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&& (C & The6Neighbors[i])) /* and is 6-adjacent to C */
K0 = K0 | (1<<i); /* so belongs to K0 */

}
100

/* Build the set K associated to C */
K = K0 & MASK N18; /* A voxel of N26(x)\setminusN18(x) */

/* cannot be isolated in X and then */
/* is obviously bold. */

do { /* Remove the bold voxels in K */
some removal=0;
for (i=0 ; i<27 ; i++)
{

if ( (K & (1<<i)) && 110

In 2x2x2Cube( (K & The26Neighbors[i]) & MASK N26))
{

K = K ^ (1<<i);
some removal=1;

}
}

}
while (some removal);

if (SimpleClosed26Curve(K)) return 1; 120

seen = seen | C;
}

return 0; /* No simple closed 26-curve found !!! */
}

/* Find all the 26-connected components C of G 26(x,\overline{X}) and check *
* for each one if the associated set K is a simple closed 6-curve. *
* Return 0 if no such K is a simple closed 6-curve *
* Return 1 otherwise */ 130

int FindK6Candidates(Config configuration)
{

Config K,K0; /* The sets K and K0 */
Config seen=0; /* Bitwise OR of all the connected C components of */

/* G26(x,\overline{X}) already investigated */

Config G6 = cnfG6(configuration);
Config G26Comp = cnfG26((˜configuration) & MASK N26);
Config C;
int i,some removal; 140

/* Trouve une composante 26 connexe */
while ((C=FindConnectedComponent( G26Comp & ˜seen, The26Neighbors)))
{

K0=0; /* K0 is the set of voxel in G6(x,X) which */
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for (i=0 ; i<27 ; i++) /* are 26-adjacent to the component C */
{

if ( (G6 & (1<<i)) &&
( C & The26Neighbors[i]))

K0 = K0 | (1<<i); 150

}

K = K0;
if (SimpleClosed6Curve(K)) return 1; /* First test (optimization) */

do { /* Remove the extremities in K */
some removal=0;
for (i=0; i<27 ; i++)
{

if ((K & (1<<i)) && (cnfCardinal(K & The6Neighbors[i]) == 1)) 160

{
K = K ^ (1<<i);
some removal = 1;

}
}

}
while (some removal);

if (SimpleClosed6Curve(K)) return 1;
seen |= C; 170

}
return 0; /* No simple closed 6-curve found !!! */

}

/* Check if all the points of the configuration belong to *
* a 2x2x2 cube */

int In 2x2x2Cube(Config config)
{

return ( config 180

&&
( !(config & ˜MASK CUBE0)
| | !(config & ˜MASK CUBE1)
| | !(config & ˜MASK CUBE2)
| | !(config & ˜MASK CUBE3)
| | !(config & ˜MASK CUBE4)
| | !(config & ˜MASK CUBE5)
| | !(config & ˜MASK CUBE6)
| | !(config & ˜MASK CUBE7)));

} 190
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